Interactive differential growth simulation for design

Emilie Yu
s181757@student.dtu.dk
Danmarks Tekniske Universitet

ABSTRACT

Designing curved and wrinkled organic looking 3D shapes is hard
with traditional modeling software. We propose a web-based ap-
plication capable of generating such shapes based on differential
growth simulation. We then create a user interface such that novice
users can explore a large space of possible shapes. A user study
confirms that all users can generate a diversity of shapes. However
further work is needed to guide users while they learn how to use
the application, and to bring more value to them through extended
customisation and fabrication possibilities.

1 INTRODUCTION

Designing 3D shapes can have many applications, from fabrication
to video game asset creation. Many design softwares exist to cater
to the needs of content creators, and with those, a skilled artist
can succeed in creating any complex shape, given enough time.
However, some shapes such as trees, plants, and objects with a
repetitive pattern or structure such as buildings, still remain espe-
cially time-consuming to create manually, and procedural modeling
techniques have been developed to generate them while still giving
control to the artist [10, 11].

In this project, we create an online interactive tool to generate
thin surfaces with curved and wrinkled edges, reminiscent of what
can be observed in nature on flower petals, leaves, or some animals
(Fig. 2).

We propose to generate these surfaces by simulating differential
growth. Differential growth is observed in plant leaves as growth is
faster near the edge. To respect bio-mechanical constraints and this
spatially varying growth strain, they become curved and rippled
on the edge as they grow [6]. Our growth simulation is based on a
3D triangular mesh on which we simulate cell creation, repulsion
between cells and bending/stretching resistance.

With our solution, the user can control the generation of the
shape through a number of exposed parameters, thus exploring a
large diversity of results. A user study validates that our interface is
accessible to anyone, even users with no prior modeling experience.

Figure 2: Ruffled kale leaves and flower petals. Photos by
Erda Estremera on Unsplash.

2 RELATED WORK

Here we present work related to the effect of differential growth
on shape formation in plants. Then we present other simulation
tools that generate shapes with a growth simulation and explain
how our solution differentiates from these.

2.1 Differential growth and shape formation

It has been found that differential growth on leaves and petals
drives the formation of a variety of complex 3D shapes.

The wavy shapes of the edge of a leaf was compared to that
of a torn plastic sheet and it was explained by Marder et al. that
this pattern was the result of elastic relaxation after a permanent
deformation of the sheet leading to a different equilibrium distance
between points [9].

Liang and Mahadevan [6] studied more specifically the effects
of this phenomenon when taking into account the boundary condi-
tions of a long leaf. They found through observation of live leaves
and numerical simulation that differential growth could cause the
leaves to become saddle-shaped and/or to present edge ripples,
depending on the scale of the growth strain at the edge.

Lastly, Huang et al. [4] showed that this effect could cause leaves
to adopt a variety of 3D shapes, such as being twisted, helix shaped
or wavy, depending on growth strain scale and the steepness of
growth strain fade.



o @ ‘

(b) ‘ ©

Figure 3: (a) Ours. (b) Edge based growth by Nervous System.
(c) Cellular Form 17_0007_0025 by Andy Lomas.

This theoretical work on morphogenesis is at the foundation of
our growth simulation. The effect of growth fade on the resulting
shape is one aspect that we will explore to provide user control.

2.2 Growth simulations for design

Using simulation of growth to design shapes is not a novel idea.
Here we present 2 interesting takes on this problem.

Nervous System explored quite extensively the idea of using
differential growth to drive the creation of 3D surfaces reminiscent
of flowers and other ruffled organisms [8]. They model the surface
by a triangle mesh that resists bending and stretching with the
discrete shells model by Grinspun et al. [3] and resolve by implicit
integration. Our solution is directly inspired by this work. We use
a triangular mesh to model the surface and use the same method
as them to compute geodesic distance [2]. However, we propose
a web-based interactive solution, which puts more emphasis on
limiting computationally expensive methods. Therefore we have to
do without the discrete shells model. Our results are less intricate
than theirs (see Fig. 3), as we face slow convergence for very detailed
models (see Appendix B for more details about performance).

Andy Lomas goes with a different approach in Cellular Forms
[7]. In this project, growth is simulated on cells represented by a
particle system. The simulation is implemented on the GPU and this
enables simulating growth for over 50 million particles. Differential
growth is also simulated, though it is not edge based but comes
from reaction-diffusion over the surface from a source. Because of
this, the results are very different from Nervous System’s work and
ours (see comparison Figure 3).

None of the previous work feature an interactive simulation
available to the public.

3 METHOD

In this section, we present the algorithm devised to simulate growth
on a surface embedded in a 3D space, and introduce the parameters
that are exposed to users in the web application.

The simulation runs in small time steps, with the result of each
time step being displayed in the application. Users can see imme-
diately how the simulation is evolving and change parameters to
fine tune their result.

Each step of the simulation is composed of 4 mechanisms:

¢ Differential growth: add vertices

e Repulsion: integrate repulsive influence of vertices on their
neighbors

¢ Environment influence: integrate influence of gravity

o Surface cohesion: smooth the mesh

Figure 4: Results for different growth sources configura-
tions (70 growth steps). Inset: initial state. (a) All edge. (b)
3 sources. (c) 5 sources.

3.1 Differential growth

To model differential growth, we first introduce the concept of
growth source, and we use those to compute the growth factor
on each vertex of the mesh. Growth is then driven by splitting
edges where the local growth factor is above a threshold. We can
metaphorically think of edge splitting as "adding cells" to the living
organism.

Growth source. A growth source is a point on the surface where
the growth factor will be at its maximum. It was observed that the
wavy shapes of leaves is driven by differential growth with growth
sources along the edge [4, 6].

To allow for a wider range of generated shapes and inspired
by the work of Nervous System [8], we give users the option to
choose between the whole edge being covered in growth sources,
or a small number of growth sources equally distributed on the
edge (see Figure 4).

Growth factor. To determine whether a new cell should be added
in a given zone of the mesh, we need to compute the local growth
factor. The growth factor at a point is a function of the geodesic
distance from this point to the nearest growth source. We use the
heat method by Crane et al. [2] to compute the geodesic distance
between 2 vertices of the mesh.

The normalized growth factor ¢; at vertex v; is computed from
the geodesic distance to the closest source d; and the maximum
geodesic distance computed on the mesh D = maxy d:

D -d;

¢;i = sigmoid , 1 — growthZone (1)

The sigmoid function ! is applied to give users control on the
scale of the growth zone. They can control this through the exposed
parameter growthZone (see Figure 5).

Growth by edge splitting. Once the per-vertex growth factors have
been computed, we look at each edge of the mesh and decide
whether it should be split. When an edge is split, a new vertex
is added at its center and the neighboring faces are split in 2.

An edge of length [, should be split if it were to become longer
than the rest length [y (mean initial length of edges) after being
virtually scaled up by the growth factor ¢@e.

lex(1+¢e) =1y = splite

1See Appendix A for more details



Figure 5: Results for different growth zone values (155
growth steps). Inset: initial state. (a) growthZone = 0.1 (b)
growthZone = 0.5 (c) growthZone = 0.8

Mesh quality. After all necessary edge splits are performed, mesh
quality is improved by flipping edges if it makes the minimum
angle of the adjacent triangles bigger [1]. Edges with a dihedral
angle > 0.3rad are prevented from flipping to preserve geometry.

3.2 Repulsion

The second mechanism driving the formation of the 3D shape is
repulsion between vertices of the mesh. If we think again of the
vertices as cells of an organism, each cell has a volume around it
which cannot be interpenetrated by other cells.

At each time step, we compute the elastic force fe applied on a
vertex v; by other vertices in its neighborhood Nj;.

X5 — X
fe=ke D5 by =xill=Le) s o @
J.vjeN; J !

This formulation is Hooke’s law, where we model a spring of
stiffness k. and of equilibrium length [, between the vertex v; and
each of its neighbors v;. The position of a vertex v; is noted x;.

To make it computationally viable to compute this force, we use
a 3D grid structure of resolution [, implemented as a hash map.

3.3 Environment influence: gravity

To add user control to the simulation, a directional force is added
to represent gravity. The users can control direction and norm of
this vector through the interface.

The force corresponding to gravity g on vertex v; is:

fg=0img (3

All vertices are considered to be of unit mass for simplicity. Weigh-
ing fg by the growth factor ®; is a way to constrain vertices that
are not in a growth zone to be fixed, which prevents the whole
model from falling.

Once f, and fy are computed for each vertex using (2) and (3),
explicit Euler integration is used to update the positions.

3.4 Surface cohesion

With only the 2 previous rules applied to the surface each time step,
the result will become very wrinkled and jagged. This is because
some properties from the surface are not taken into account: it
should resist bending and stretching.

As the surface is a triangle mesh, the problem can be approached
as a discrete smoothing problem. We want to minimize the mem-
brane energy and the thin plate energy. We do this by iteratively

Starting shape @ View

Orbit around model
Smoothness @ >
L —— ——

Growth zone @

Export 3D model @

-
Export to OBJ

Growth sources @

[=E=lele]

Gravity @
Norm e —

Direction () e—

Figure 6: Screenshot of the user interface

updating vertex positions using a discrete approximation of the
Laplacian (as proposed by Kobbelt et al. [5]).

After implementing minimization of both membrane and thin
plate energies, we observed that we could get a satisfying result us-
ing only the less expensive membrane energy optimization update.
Therefore we use only this update rule for vertex v; of position x;
and with N; neigbhors in N;:

1
X; < X; + smoothness = N Z xj — X (4)
! ‘UjENi
We expose parameter smoothness in the user interface.
The resulting update is simply to move each vertex towards the
barycenter of its neighbors. We can think of this update as cells
keeping cohesion between each other.

4 RESULTS AND DISCUSSION

The tangible output of this project is a web application ? consisting
of a user interface to run the simulation and control its parameters
(Fig. 6). The application runs at interactive speed for a low num-
ber of vertices but becomes slow for a big mesh (see Appendix B).
In this section we will discuss how well the initial goals are ful-
filled by analysing results from a user study and present potential
applications.

4.1 User study

Through a qualitative user study, we validate that the web applica-
tion satisfies the criteria of being:

(1) Accessible to anyone, without requiring previous modeling
experience.

(2) Controllable, such that the user can explore the space of
possible results and create shapes from parameters in a pre-
dictable way.

The user study was conducted with 7 participants. 3 of the partic-
ipants were supervised and were tasked with reproducing 4 target
shapes under a limited time while thinking aloud. The other partic-
ipants were asked to create a shape without any constraints. All

2The application is accessible online at: differential-growth.surge.sh


differential-growth.surge.sh

€ W
G

Figure 7: 3D models generated by users after a short explo-
ration of the web application

I understand well

| don't understand at all

Figure 8: How well do you understand the cause/effect rela-
tionship between changing these parameters and the gener-
ated shape? (7 participants)

participants answered a survey and uploaded a shape that they
generated (Fig. 7).

Accessible interface. 6 of the 7 participants are not familiar with any
modeling software. However, all participants succeeded in creating
a 3D model with our application, with no or little outside help other
than the embedded tutorial in the application (see Fig. 7).

Controllable interface. All participants understand the cause/effect
relationship between changing the parameters in the interface and
the generated shape relatively well (see Fig. 8). During the super-
vised thinking aloud tests, all 3 participants succeeded in reproduc-
ing the target shapes under 5 minutes.

However, this success is open to discussion. First, some parame-
ters and their effect are confusing to users. Half of the participants
stated that the smoothness parameter was unclear to them.

Secondly, thinking aloud tests showed that participants discover
the effect of parameters mostly through trial and error. There is no
apriori intuition about the parameters and their effect. This learning
phase can feel overwhelming to participants, as they try to tweak
each parameter and discover its effect.

Lastly, all 3 supervised participants failed to discover that the
number of growth sources could be changed during the simulation
to create more varied results. This is interesting, as it shows that
more guidance is required from the interface to encourage users to
try interactions that they would think impossible.

A quick fix to these limitations would be to expose less param-
eters, we think of hiding smoothness which was more confusing
than useful. Another feature that would help the learning process
is an interactive tutorial, revealing parameters one at a time on the
interface, although further work is needed to create it.

9
ps. o
&

Figure 9: Fabricated models

4.2 Potential applications

All participants found their exploration of the simulation very
enjoyable. However, without a particular intent in mind, they didn’t
feel compelled to continue using it. Therefore it seems like the next
step for this project would be to look at potential applications for
the generated shapes, and think of how the simulation should be
extended to permit those.

Fabrication. As the output from the simulation is a 3D mesh, it is
possible to 3D print it to turn it into a tangible object. We experi-
mented with this technology and printed 2 simple shapes (see Fig. 9).
The result is satisfying but 3D printing more complex shapes such
as those on Figure 7 is close to impossible with filament-based print-
ers because they must generate support structures for overhanging
parts.

To make 3D printing fabrication easier, some constraints could be
added to the simulation. We prototyped adding repulsive surfaces
such that the generated shape has one flat side that can become the
first layer of the 3D print. More constraints could be added, such as
penalizing formation of overhangs to prevent issues with support.

Custom jewellery. A potential application (see [8]) is to create cus-
tom jewellery from the generated shapes. To create viable jewellery
pieces, the simulation needs to support imported initial meshes,
and it would need to be more controllable. For example it could
allow users to choose growth sources precisely by clicking on a
zone of the mesh.

5 CONCLUSION

We present a differential growth simulation and an associated user
interface, that enable novice users to create custom, varied shapes
that would be very hard to create with a classic CAD or modeling
software.

We validate our solution through a user study and find out that
improvements need to be done regarding guiding users to explore
the complete space of possible shapes.

Finally, further work on making the generated shapes more
customizable and suitable for fabrication is the next step to take to
bring more value to users.



i
1
|
1
1
1
N
4

Vo

1

1 1

bias = 0.2 bias = 0.5 bias = 0.9

Figure 10: Sigmoid function for different bias values

ACKNOWLEDGMENTS

Thanks to Rohan Sawhney and Mark Gillespie of the

Geometry Collective (Carnegie Mellon University) for building
geometry-processing-js >, the geometry and linear algebra li-
brary on top of which this work is built.

REFERENCES

[1] J Andreas Beerentzen, Jens Gravesen, Francois Anton, and Henrik Aanges. 2012.
Guide to computational geometry processing: foundations, algorithms, and methods.
Springer Science & Business Media.

Keenan Crane, Clarisse Weischedel, and Max Wardetzky. 2013. Geodesics in Heat:

A New Approach to Computing Distance Based on Heat Flow. ACM Trans. Graph.

32, 5, Article 152 (Oct. 2013), 11 pages. https://doi.org/10.1145/2516971.2516977

[3] Eitan Grinspun, Anil N. Hirani, Mathieu Desbrun, and Peter Schroder. 2003.

Discrete Shells. In Proceedings of the 2003 ACM SIGGRAPH/Eurographics Sym-

posium on Computer Animation (SCA ’03). Eurographics Association, Aire-la-

Ville, Switzerland, Switzerland, 62-67. http://dlacm.org/citation.cfm?id=846276.

846284

Changjin Huang, Zilu Wang, David Quinn, Subra Suresh, and K. Jimmy Hsia.

2018. Differential growth and shape formation in plant organs. Proceedings of

the National Academy of Sciences 115, 49 (2018), 12359-12364. https://doi.org/10.

1073/pnas.1811296115 arXiv:https://www.pnas.org/content/115/49/12359.full. pdf

Leif Kobbelt, Swen Campagna, Jens Vorsatz, and Hans-Peter Seidel. 1998. In-

teractive multi-resolution modeling on arbitrary meshes. In Siggraph, Vol. 98.

105-114.

Haiyi Liang and L. Mahadevan. 2009. The shape of a long leaf. Proceedings of

the National Academy of Sciences 106, 52 (2009), 22049-22054. https://doi.org/10.

1073/pnas.0911954106 arXiv:https://www.pnas.org/content/106/52/22049.full.pdf

[7] Andy Lomas. 2014. Cellular Forms: an Artistic Exploration of Morphogenesis.

AISB (August 2014). http://research.gold.ac.uk/24732/
[8] Jesse Louis-Rosenberg. 2015. FLORAFORM — AN EXPLORATION OF DIFFEREN-
TIAL GROWTH. https://n-e-r-v-o-u-s.com/blog/?p=6721

[9] M Marder, E Sharon, S Smith, and B Roman. 2003. Theory of edges of leaves.

Europhysics Letters (EPL) 62, 4 (may 2003), 498-504. https://doi.org/10.1209/epl/

i2003-00334-5

Pascal Miiller, Peter Wonka, Simon Haegler, Andreas Ulmer, and Luc Van Gool.

2006. Procedural modeling of buildings. In Acm Transactions On Graphics (Tog),

Vol. 25. ACM, 614-623.

[11] Przemyslaw Prusinkiewicz, Mark Hammel, Jim Hanan, and Radomir Mech. 1996.
L-systems: from the theory to visual models of plants. In Proceedings of the 2nd
CSIRO Symposium on Computational Challenges in Life Sciences, Vol. 3. Citeseer,
1-32.

[2

[4

o

(5

=

=

=
=2

A SIGMOID FUNCTION WITH BIAS

The sigmoid function used to compute the growth factor in (1) is a
polynomial function similar to a smoothstep between 0 and 1, but
such that it is possible to bias it towards 0 or 1. See Figure 10.

X 0 < x < bias
sigmoid(x, bias) = (1—x)?

—m bias < x <1

3https://github.com/GeometryCollective/geometry-processing-js

6000 .

5000 o

4000

3000

Time {ms}

2000 -

1000

0 5000 10000 15000 20000 325000
Number of vertices

Figure 11: Time to perform one step of the simulation and
render the frame as a function of the number of vertices in
the mesh. Blue line corresponds to 0.5s (Measured on laptop
with Intel® Core™ i7-6600U CPU @ 2.60GHz x 2)

Figure 12: Shapes generated. Left: with a frame time below
0.5s (t = 14s). Right: at the end of the performance test (t =
100s)

B PERFORMANCE

Our solution maintains an acceptable framerate only for a rather
small number of vertices in the mesh.

We evaluated performance by measuring the time necessary
to perform one step of the simulation (and render the frame). On
Figure 11 we see that the performance quickly deteriorates for
meshes bigger than 10 000 vertices.

The result obtained with an acceptable framerate (time < 0.5s)
seen on Figure 12 left is still quite interesting but it is disappointing
that more intricate results such as the model generated at the end
of the performance test (Figure 12 right). This result took 100s
in total to obtain, which would be an acceptable time for an off-
line simulation, but is too slow for our purpose of an interactive
simulation.

However, performance is something that we have not sought
to optimize in our current implementation. Further work on this
aspect could improve the current results. For example we could
take advantage of web workers which are a browser functionality
to run tasks in background threads. We could use different threads
for the simulation and frame rendering.


https://doi.org/10.1145/2516971.2516977
http://dl.acm.org/citation.cfm?id=846276.846284
http://dl.acm.org/citation.cfm?id=846276.846284
https://doi.org/10.1073/pnas.1811296115
https://doi.org/10.1073/pnas.1811296115
http://arxiv.org/abs/https://www.pnas.org/content/115/49/12359.full.pdf
https://doi.org/10.1073/pnas.0911954106
https://doi.org/10.1073/pnas.0911954106
http://arxiv.org/abs/https://www.pnas.org/content/106/52/22049.full.pdf
http://research.gold.ac.uk/24732/
https://n-e-r-v-o-u-s.com/blog/?p=6721
https://doi.org/10.1209/epl/i2003-00334-5
https://doi.org/10.1209/epl/i2003-00334-5
https://github.com/GeometryCollective/geometry-processing-js

	Abstract
	1 Introduction
	2 Related work
	2.1 Differential growth and shape formation
	2.2 Growth simulations for design

	3 Method
	3.1 Differential growth
	3.2 Repulsion
	3.3 Environment influence: gravity
	3.4 Surface cohesion

	4 Results and discussion
	4.1 User study
	4.2 Potential applications

	5 Conclusion
	Acknowledgments
	References
	A Sigmoid function with bias
	B Performance

