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Abstract

While traditional design sketches provide a quick way for designers to express
a 3D concept, sketches are inherently 2D, meaning that the artist must per-
form a projection of their 3D idea and that the viewer must decode it. The
idea to express one-self using 3D input is not new, as sketching in immersive
environments has been prototyped since more than 2 decades. However, users
face issues intrinsic to 3D sketching, which hamper their creation process. One
issue is the difficulty to perform precise sketching motions in 3D, necessary to
sketch correctly. Another issue is with visualisation of a 3D sketch: while a 2D
sketch has a fixed viewpoint, a 3D sketch must be made to look correct from
any viewpoint. We set out to address these challenges with an approach based
on automatic stroke beautification, and on inferring the surfaces that the user
envisions while they sketch, in order to provide occlusion cues that help un-
derstand the sketch. Our prototype and the user study show that this method
offers promising improvements over free-hand 3D sketching.
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Chapter 1

Introduction

1.1 Motivation

A growing body of work on the subject of algorithmically understanding sketches
provides us with data and understanding of how designers use the medium of
2D sketching to represent the 3D shape of an object [21, 56]. Meanwhile, the
hardware technology to track headset and hand-held controllers precisely in 3D
is mature and commercially available [15, 23]. This technology enables artists
to draw in mid-air by simply moving their hand in space, creating 3D strokes
that can be directly interpreted as such in an immersive environment, without
the need for projection on a 2D screen. Bypassing that step of projection of a
3D concept to 2D, inherent to 2D sketching, could lead to interesting new ways
to create. Externalizing 3D concepts directly in 3D could provide a more im-
mediate creation experience, and enable designers to avoid one of the challenges
of sketching: making sure the observers can infer the correct depth information
from their sketch.
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1.1.1 Sketching: a traditional design tool

Designers use sketching early on in the design process, as a way to both external-
ize their mental concept of a product and develop the ideas further, evaluating
and precising them as they sketch [46].

Figure 1.1: Designer sketches from OpenSketch dataset [21]

By looking at examples of designer sketches [13, 21], and the definition of a
sketch as described by Buxton in the context of user experience design [8], we
can extract a few core properties that designers seem to value in an exploratory
sketch:

• Sketching is quick and inexpensive.

• A sketch should reveal a minimal level of detail, and suggest solutions
rather than confirm one.

While both pen and paper and digital tools are now used commonly for this
creation process, these input modalities are inherently 2D. We seek to propose
a 3D sketching interface, for which the above desirable properties would be
satisfied while "3D sketching".

1.1.2 Using VR as an immersive creation interface

As virtual reality gains popularity, this technology is being used by artists as
a new creative medium that allows them to draw or model while immersed in
their creation, in a virtual 3D space. In recent years, commercial tools have
been released to enable artists to sketch free-hand in mid-air [17] and to create
3D design concepts by sculpting digital clay [14] or through an interface similar
to desktop CAD modelling [18, 20] (Fig. 1.2).
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Figure 1.2: Commercial tools for VR creation. From left to right: TiltBrush
[17], Oculus Medium [14], Gravity Sketch [20]

Despite the success of these tools among a nascent community of artists, ex-
perimental studies have shown that users face new challenges while sketching in
VR, as they are unable to draw precisely in all arbitrary scales and orientations
that a VR environment could afford. Difficulty to accurately judge distances in
the depth dimension, motor limitations and lack of a supporting surface are all
factors contributing to less precise strokes [2, 34].

While TiltBrush [17] has its main interaction as free-hand sketching, experienced
artists manage to create beautiful pieces by painting dense accumulation of
strokes (see Fig. 1.3), where lack of precision matters less than in the tasks
devised in previously mentioned usability studies. Such densely painted 3D
sketches also provide occlusion cues that help understand the objects by looking
at solid surfaces rather than at visually overlapping sparse contour and feature
strokes. However, the 3D paintings created in TiltBrush - because of their high
stroke density - put more emphasis on rendering the detailed look or texture
of a surface, rather than the overall 3D shape, as a design sketch should do.
Design sketches are composed of a sparse set of strokes that infer the surface
(see Fig. 1.1).

Figure 1.3: TiltBrush artworks. Left: by Estella Tse, right: by Tristan Eaton.
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Modeling tools such as Gravity Sketch and Google Blocks can be used to create
efficient 3D models, but they use interaction metaphors close to desktop-based
3D modelling tools such as Blender, where the underlying mathematical rep-
resentation of the geometry such as mesh vertices and curve control points are
exposed. While very efficient in the hands of a trained user, they lack the
immediacy and accessibility of sketching.

1.2 Goal

In this context, we set out to propose novel interactive solutions to use VR
sketching as a 3D concept design tool. We explore ways to help artists real-
ize their 3D visions by sketching a sparse set of strokes mid-air. We choose
mid-air sketching as the main interaction metaphor for creation, then augment
it with automatic stroke beautification and surface inference such that users
can focus on shape exploration through sketching rather than on fighting the
aforementioned difficulties of VR sketching.

Interactive stroke beautification automatically corrects user imprecision, while
respecting the intent of their input. This allows them to focus on the main shape
of their strokes, rather than on trying to precisely reach target positions in 3D
space, which is known to be prone to errors and detrimental to stroke quality
[2]. With stroke beautification, intended stroke intersections are enforced, so
it becomes easy to draw a well-connected network of strokes. Assuming that
the user means to represent a solid object with a sparse set of strokes, we can
use the curve network obtained by beautification to infer the surface that the
strokes bound. These surfaces provide adequate occlusion cues, which helps the
user understand their sketch from any viewpoint.

We implement a VR application capable of interactive beautification of 3D
strokes and surface inference from those strokes. We then conduct a user study
to find out whether such a sketching interface can enable artists to explore 3D
design concepts better than with free-hand 3D sketching. Finally, we produce a
variety of 3D sketches with our tool, to demonstrate its versatility.
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Related work

The work we present in this thesis is related to previous work on immersive
sketching, as we use similar interaction metaphors and face the same challenges.
It is also related to work on inferring artist intent from 2D sketch, from which we
take inspiration to implement our 3D stroke beautification method. Finally, an
important part of this thesis is about inferring surfaces from 3D curves, therefore
we will give an overview of some work on surfacing of 3D curve networks.

2.1 Immersive sketching

Since early immersive environments such as the Responsive Workbench [31] the
CAVE [9] and head-mounted-displays took off - if not commercially, at least
in many research groups - researchers have investigated the possibility of using
these new types of display and input as an interface for artistic creation. In
1995, HoloSketch presented a novel "WYSIWYG" interface to create 3D objects,
by using direct 3D position input from a tracked hand-held device to create
primitive objects or free-form tubes that follow the hand motion of the user.
Surface Drawing enabled users to create and deform surfaces in mid-air with
a sweep of the hand (Fig. 2.1 left) [42]. In FreeDrawer, the 3D model was
created on the Responsive Workbench by sketching a sparse network of feature
curves, from which the system inferred surfaces that could later be deformed
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(Fig. 2.1 right) [55]. While this body of work concerns interfaces that no
longer exist, their ideas are still very relevant to modern immersive sketching
applications. TiltBrush and many other creative applications employ a mid-air
sketching interaction similar to the ideas presented in HoloSketch and Surface
Drawing. Our work follows the same philosophy as FreeDrawer, where the 3D
form is defined by a sparse set of curves. While they only snap nearby curves to
form a network, we support more beautification constraints. We also propose
automatically detected surface patches, while they rely on the user to indicate
all patches that should be surfaced.

Figure 2.1: Left: Surface Drawing [42], right: FreeDrawer [55].

Supporting our hypothesis that VR sketching could be of interest for designers,
Israel et al. [26] reported that designers have a strong interest in using an im-
mersive sketching interface. Moreover Israel et al. [26] claim that despite early
technical limitations, 3D sketching in a CAVE presents promising qualities to
help them externalize ideas and foster creativity.

However, new challenges arise in VR sketching interfaces, compared to tradi-
tional sketching. When tasking users with sketching simple strokes like a straight
line, a circle or perpendicular lines, Arora et al. [2] and Machuca et al. [34] have
measured that the accuracy of the result compared to the target is quite poor.
The lack of a supporting surface induces the need for better motor control in a
space with more degrees of freedom than traditional 2D sketching. Adding to
that, low spatial ability can inhibit users, making them more prone to errors
when positioning strokes relative to each other.

To overcome these challenges in immersive sketching, a variety of interfaces have
been proposed. One idea is to reduce the degrees of freedom when drawing a
stroke mid-air. 3-Draw [41] did so by decoupling the act of drawing the curve
to define its shape from indicating its position and orientation in the overall
drawing. Keefe et al. [29] use haptic feedback from a Phantom device and a
2-hand interaction metaphor inspired by tape drawing [6] to separate drawing
the curve from indicating its tangent direction (Fig. 2.2a). Other methods avoid
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direct 3D freehand sketching in the creation process. Jackson and Keefe [27]
proposed to use curves from a 2D sketch as a basis for VR creation, while Arora
et al. [3] use a 2D tablet on which the artist can sketch precise strokes that
were mapped to a proxy 3D surface defined by a few freehand 3D strokes (Fig.
2.2b). In a similar spirit, Kim et al. [30] capture hand motion to describe 3D
scaffolding surfaces on which to draw. Contrary to these methods, we tackle
head-on the challenge of imprecision in free-hand sketching. We keep free-hand
sketching as the main interaction metaphor for our system, and rely purely on
an algorithmic process to disambiguate imprecise strokes.

Finally, some work has been done on beautification of freehand 3D strokes,
which is directly related to our method. Machuca et al. [33] beautify the user’s
strokes and suggest snapping targets by automatically detecting potential geo-
metric relationships between new and existing strokes (Fig. 2.2c). In contrast
to our approach, they only support planar strokes and they limit snapping to
the endpoints of strokes. On a high level, Machuca et al. [33] focused on en-
abling the user to sketch strokes with precise geometric relationships (such as
perpendicular lines or offset circles). In contrast, the goal for our beautification
method is to create connected free-form curve networks.

Figure 2.2: (a) Drawing On Air [29]. (b) SymbiosisSketch [3]. (c) Multiplanes
[33].

2.2 2D sketch beautification and sketch depth in-
ference

A number of methods have been developed to perform what is commonly called
"sketch beautification". Their usefulness comes from the common need to create
diagrams or drawings that satisfy specific geometric constraints. Without sketch
beautification, it is difficult to do so by hand, especially with inputs such as a
computer mouse or trackpad.
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Pavlidis and Van Wyk [39] introduced one of the first such systems, that can
take a line drawing as an input and output a drawing close to the input while
satisfying geometric constraints. However, they focused on simple drawings
composed of a small number of line segments. While this system was applied as
a post-process to the drawing once it was finished, Igarashi et al. [25] proposed an
interactive beautification method, that treats each new stroke as it is sketched,
while keeping the rest of the sketch as is. This approach enabled them to
consider more complex sketches and geometric relationships between strokes.
The interactivity of the system also gives more control to the user by letting them
choose between multiple possible beautified results. More recently, Fišer et al.
[16] proposed an interactive beautification method that supports general Bézier
curves as input, and an exhaustive number of geometric constraints, enabling
users to create very complex beautified drawings (Fig. 2.3a). While all of these
methods work with 2D sketches, we took inspiration from their approaches to
design our interactive 3D beautification method. While we support a smaller
set of geometric constraints, we also work on Bézier curve as in ShipShape [16]
and we draw inspiration from the way they select a set of geometric constraints
to apply to a stroke.

Figure 2.3: (a) ShipShape [16]. (b) CrossShade [47]. (c) Analytic Drawing of
3D Scaffolds [44].

Another body of work focuses on inferring depth from 2D sketches, in order
to enable artists to create 3D curve networks, 3D objects, or a 3D appearance
from a 2D sketch [10, 43, 44, 47, 56]. While these methods take input that is
a lot more ambiguous than in our 3D sketching case, their core idea of lifting
ambiguities in the input while preserving the artist’s intent is identical to our
goal. One approach to lift the depth ambiguity from a sketch is to leverage
domain specific knowledge on how artists draw. Shao et al. [47] observed that
concept sketches often contain cross-section curves, which help the viewers to
perceive the curvature of a drawn object. By expressing these perceptual cues
as geometric constraints, they derived a method to infer the surface normals,
and proposed an automatic shading technique for concept sketches (Fig. 2.3b).
Similarly, Xu et al. [56] leveraged global perceptual cues from concept sketches
in order to infer depth for each sketched curve, effectively creating a 3D curve
network from a 2D sketch. While these algorithms are applied to a finished
sketch, other methods allow the users to create 3D curves interactively on a
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2D interface such as a pen tablet. Taking inspiration from traditional drawing
practices, Schmidt et al. [44] proposed an interactive method to infer depth of
3D curves sketched in 2D by using construction lines of the drawing as cues
(Fig. 2.3c). In a different application domain, De Paoli and Singh [10] use a
3D model as a base to draw on, and proposed a method for inferring depth by
recognizing the relations between the sketched 2D strokes and the model. Our
interface adopts a similar workflow, as we interactively lift ambiguities in an
input stroke by using information from the previously drawn strokes.

2.3 Surfacing of 3D curve networks

Following the rising availability of 3D curve network data, coming either from
2D sketches and the methods mentioned above (Sec. 2.2), from direct capture
with mobile devices [49], or from sketching interfaces [4], methods to generate a
closed surface that extrapolate those curves have been developed. In an artistic
context, the interest of doing so is mainly for visualisation, as the surfaces
provide a clearer representation of the shape, with occlusion cues. A curve
network created by a designer is a compact yet representative description of a
3D shape [19], that a human observer can easily interpret (see Fig. 2.4 left for
examples of curve networks). While this is natural to do for humans, there are
actually two distinct steps in this process. First, we must recognize which cycles
of the curve network bound solid surface patches, as opposed to the cycles that
bound cross-sections or boundary of the model for example. Secondly, we have
to infer the curvature of each surface patch, based on the sparse curve network.
In the following paragraphs, we summarize previous work on these two aspects.
We draw inspiration from these methods to implement an interactive surfacing
of curves (Sec. 3.3).

Figure 2.4: Curve networks and the envisioned surfaces, reconstructed with
the method by Pan et al. [37].
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To recognize cycles that bound surface patches algorithmically is not an easy
task. The search space of all possible cycles in the graph of a typical 3D curve
network from a sketch is big, and the validity or quality of one cycle can not be
determined locally, but rather in the context of the other cycles. Abbasinejad
et al. [1] proposed to construct an optimal cycle basis with respect to weigh-
ing of cycles defined by simple heuristics. Their algorithm favors cycles that
are short (in number of edges), close to being flat and that do not separate
the graph. Combined with a user interface to add a closing patch (the cycle
basis does not close off the surface) and eventually correct erroneous patches,
they achieved good results on the ILoveSketch dataset [4]. To support shapes
of higher genus and non manifold surfaces, Zhuang et al. [57] introduced a more
general approach by reformulating the search of an optimal set of cycles as a
search for the optimal mappings at each vertex and curve that describe how
incident curves at a vertex form cycles. The cost metrics they use favor patches
that are smooth, convex and if multiple patches share a curve, they should be
uniformly distributed around the curve. By searching for these optimal local
mappings with a dynamic programming algorithm, combined with an effective
pruning strategy, they can find a solution for a variety of complex 3D curve
models in under a second. The approach we have on this problem is different
from these methods, as the curve network that we treat is constructed interac-
tively. We leverage that fact by detecting cycles on the network locally, where a
new curve is added. In the context of the interactive VR application, it is also
possible for the user to indicate any missing surface patches, so we rely on that
to disambiguate some cases (see Section 3.3.2).

Once the cycles bounding patches are found, one must construct a geomet-
ric representation of the surface patch that matches human expectation (see
Fig. 2.4 right). This geometric representation is typically a mesh, for which
one must define both topology (connectivity) and geometry (vertex positions).
Zou et al. [58] proposed an efficient algorithm to triangulate multiple closed 3D
curves, by applying a dynamic programming algorithm to select the optimal tri-
angles with respect to a given metric (such as total triangle area or total dihedral
angles) among a reduced set of possible triangles obtained from the Delaunay
tetrahedralization of the input curves. This method can provide an initial tri-
angle mesh for each surface patch, but its geometry may not be aligned with
what an observer would envision for the curve network. With additional normal
information at the curves, Stanko et al. [48] guide traditional variational meth-
ods by providing curvature information through propagated normals, to obtain
more realistic shape curvature. Based on the observation that artist-created 3D
curve networks are largely composed of representative flow-line curves that are
mostly aligned with principal curvature directions, Bessmeltsev et al. [7] surface
a curve network with a quad-mesh by finding pairings between curve segments
that bound regions of homogeneous flow-lines, then use the pairings to define
the surface in-between as a smooth interpolation between those curve segments.
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Driven by similar perception-based heuristics, Pan et al. [37] proposed a method
to generate a surface with curvature lines well aligned with the flow-line curves.
They improve curvature by iteratively refining the mesh and an associated cross
field. The goal is to have the cross field directions smoothly interpolate the
directions of the flow-lines, and the principal curvature directions of the mesh
match the cross field. We choose to apply directly the efficient triangulation al-
gorithm by Zou et al. [58] to obtain a triangle mesh from a boundary curve (see
Section 3.3.4 for more details). While applying the fairing methods by Stanko
et al. [48] or Pan et al. [37] would have significantly improved our surface geom-
etry, we leave this for future work. The surfaces we obtain are mainly used for
occlusion purposes, so their geometry is not an essential aspect.
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Chapter 3

Method

In this chapter we present the components of our interactive stroke beautification
and surfacing VR application. First we showcase the high-level workflow to
create a 3D sketch in our application (Section 3.1). Then we give an overview
of the stroke beautification process (Fig. 3.1b). It takes as input a stroke drawn
by the user mid-air, and should output a stroke that is close to the input while
satisfying as many regularity constraints as possible, with respect to the existing
strokes in the sketch. Finally, we explain how we can use the strokes to infer
the envisioned surface (Fig. 3.1c) and further use this surface to constrain some
strokes to lie on it.

Figure 3.1: Method overview. (a) Existing sketch (light grey), newly sketched
stroke (black) and constraints (blue). (b) Beautified stroke. (c)
Inferred surface.
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3.1 User workflow

Let’s illustrate the workflow with the example of drawing a computer mouse
(Figure 3.2).

• (a, b) The user creates the base of the mouse by sketching multiple short
strokes that are automatically linked into one long continuous stroke. The
strokes are also neatened to be planar.

• (c) When the user closes off the loop, a surface patch appears.

• (d) The user adds a section stroke on the mouse, which is neatened to
intersect the base. The surface is updated to take the section shape into
account.

• (e) After adding a few more strokes, the rough shape of the mouse is
defined.

• (f) The user refines the surface by adding more strokes.

• (g) Finally, the user adds some detail, the strokes are projected to lie on
the surface.

• (h) Result.

Figure 3.2: User workflow of a computer mouse sketch.
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3.2 Stroke beautification

3.2.1 Principle

The need for stroke beautification in 3D sketching arises from the broadly ob-
served lack of precision that users face with this medium [2, 33, 34]. In the con-
text of 3D design sketches, we can formulate the hypothesis that some stroke
properties are highly desirable for the user (see Section 3.2.3). For example,
in Figure 3.3a, it seems likely that the strokes forming sections of the tubular
shape should intersect the strokes from the sides, like in Figure 3.3b.

Figure 3.3: (a) Freehand sketch, (b) Beautified sketch.

Each time the user draws a new stroke, we first pre-process the stroke by fitting
a smooth line or curve to the input samples (Sec. 3.2.2). Then we beautify it and
replace the raw input stroke (Fig. 3.3a) by a beautified stroke (Fig. 3.3b). The
process can be broken down into two main steps. First we must infer the user in-
tent to determine which constraints should be applied to the stroke (Sec. 3.2.3).
We look for potential constraints in the sketching environment, composed both
of an orthogonal 3D grid and the previously drawn strokes. Secondly, we min-
imally reshape the input stroke to satisfy the constraints (Sec. 3.2.4). We de-
vise a general method based on optimisation to apply geometric constraints on
sketched strokes, while ensuring that we preserve the user input as much as
possible.
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3.2.2 Stroke pre-processing

Before beautifying the stroke, we pre-process it to remove unintended noise, then
fit a smooth curve to the input samples. We choose to use lines and cubic poly-
Bézier curves as parametric representations of the strokes. Poly-Bézier curves
- compared to other representations of curves such as Catmull-Rom curves -
comport a smaller number of degrees of freedom, with a relatively small number
of control points. They also strike a good balance between expressivity and
smoothness, so they are well-suited for design sketches [56].

Hooks removal We notice that a common unintended pattern in VR sketch-
ing is the presence of "hooks" at the beginning and end of a stroke (Fig. 3.4).
This is caused by a slight involuntary hand motion when pressing and releasing
the trigger to draw.

Figure 3.4: Left: stroke with hooks. Right: hooks removed.

We use the same method as Liu et al. [32], and cut the hooks by detecting
C1 discontinuities near the start and end of the stroke.

Line fitting We detect whether an input stroke is close to being a line, and
in that case replace the stroke by a line. We look at the following criteria to
decide:

• The total length of the input stroke Lc is close to the distance between
the stroke endpoints Ll, as in ShipShape [16].

• The average drawing speed of the stroke is above a threshold.
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Having a condition on the drawing speed enables users to deliberately draw
quasi-linear strokes without them snapping to lines by drawing slowly, to indi-
cate their intent to be more precise.

Bezier curve fitting In the general case, we fit a poly-Bézier curve to the
input stroke. We first simplify the sampling of the input stroke by applying
Ramer-Douglas-Peucker algorithm [12] to the initial list of samples gathered
during the time the trigger was pressed. Then we fit a poly-Bézier curve with
G1 continuity using a least-square fitting approach as described by Schneider
[45]. We obtain a succession of cubic Bézier curves, that minimally smooth the
input stroke. We parameterize the complete poly-Bézier curve as: B(t)t∈ [0,1].

3.2.3 Detecting geometric constraints

The beautification approach relies on first detecting which geometric constraints
are applicable to the input stroke [25]. We search for constraints by looking at
how the new stroke relates to previous strokes in the sketch. We also use an
orthogonal 3D grid that spans the drawing volume to constrain the strokes, just
as one would look for orthogonal alignments, or use a grid as support in 2D
sketches [16, 25, 44]. In this section, we first explain how we define distance and
angular thresholds for detection, then we list the 3 types of constraints that we
detect. Finally, we explain the difference between the constraints that we want
to enforce exactly, and those that we can settle for approximating.

3.2.3.1 Distance and angular thresholds

To detect constraints, but also to later apply them on the strokes, we need to
define some threshold values that we rely on to decide whether a distance or an
angle is small.

We decide to define a single distance threshold for the whole application: δ,
which is the diameter of the sphere corresponding to the brush tip. Initially,
when the drawing is of scale s = 1, δ1 = 0.02 in the units of the Unity scene.

Having a single distance threshold enables us to smoothly handle drawing vol-
ume scaling. As the user zooms in, we update this application wide threshold



18 Method

such that for a scale s ≥ 1, δ is appropriately scaled:

δ =
δ1

s
(3.1)

This enables the user to gain more precise control over their strokes by zooming
in the drawing volume.

For the angular threshold, we define θ = π
6 , which empirically seems to strike a

good balance between adequate snapping and expressivity.

Defining those threshold values to be appropriate for different users and sketches
is one of the main challenges we face in this project. While making δ dependent
on drawing scale is an intuitive way to provide some control to the user, it would
be necessary to make these thresholds customizable in a real application.

3.2.3.2 Geometric constraints

Intersections. We search for intersections between the input stroke and an
existing stroke (Fig. 3.5), or between the input stroke and a grid point. We also
detect self-intersections near the endpoints, to form closed loops.

To detect potential intersections with existing strokes, we use Unity’s built-in
Physics Colliders to detect when the brush tip comes within a radius rdetect =
2 ∗ δ of an existing stroke while sketching. For the regular grid, we simply check
whether the brush comes within a radius rdetect of one of the grid points (see
Section 4.1.3 for more details about the grid). We assume that the user wants
to draw a closed loop if the endpoints of the stroke are within a distance rdetect
of each other.

Tangent alignment. At an intersection, we compare the tangents between
both strokes. If the angle between both tangents Tnew and Told is under the
threshold θ, we add a constraint on the tangent of the new stroke at the inter-
section point (Fig. 3.6).

Planarity. We compute the best-fit plane to the control points by least squares.
If the distance from the plane to the farthest control point is below the thresh-
old rdetect, we add a planarity constraint to the stroke (Fig. 3.7). We also test
whether the plane normal ~n is close to one of the orthogonal directions of the
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Figure 3.5: Left: strokes with near intersection. Right: beautified strokes with
intersection constraint. Insets: other viewpoint.

Figure 3.6: Left: strokes with near aligned tangents. Right: beautified stroke
with tangent alignment constraint.

grid, and if it is close within an angle θ, we snap the plane to be an orthogonal
plane with respect to the grid.

3.2.3.3 Exact constraints and fuzzy constraints

We decide to separate the geometric constraints between those that we want to
enforce exactly (hard constraints), and those that we will simply try to reach,
by minimization of a quantity (fuzzy, or soft constraints).

An intersection constraint enforces network connectivity, so we want to either
completely satisfy it or reject it. Therefore we formulate it as a hard constraint.
We formulate both planarity and tangent alignment constraints as soft con-
straints, because they correspond to aesthetic properties that are desirable but
that we can settle for approximating.
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Figure 3.7: Left: non-planar stroke and best fit plane. Right: beautified pla-
nar stroke.

Having these constraints as soft terms gives us more flexibility in applying sets of
constraints that would not lead to a feasible exact solution. For example we can
apply a planarity constraint on a stroke with non perfectly planar intersection
constraints, and still get a solution that enforces the intersection perfectly while
being as planar as possible.

3.2.4 Enforcing constraints while preserving user input

Our goal is to enforce an arbitrary number of constraints on the input stroke,
while preserving the user intention as much as possible. We assume that the
input motion performed by the user is reliable to some extent, and we want to
prevent deforming it, while making it respect as many constraints as possible.
This problem is similar to what Xu et al. [56] describe for lifting a 2D sketch in
3D. Taking inspiration from their method, we formulate this problem as solving
a constrained optimization.

We describe fidelity to the input stroke as an energy function with respect to
the control point positions (Section 3.2.4.1), and pose the geometric constraints
as hard and soft equality constraints on these positions (Section 3.2.4.2). We
further explain how we can select an optimal subset of constraints from the
set of all detected constraints, in order to avoid overly-deforming the input
(Section 3.2.4.4).

In the following sections we will provide details about how we beautify strokes
that are represented by cubic poly-Bézier curves. For line segments, due to their
low degrees of freedom, it is enough to use some simple heuristics to select which
constraints to apply. We then beautify the lines by modifying the endpoints



3.2 Stroke beautification 21

position, within reasonable thresholds (see Appendix A).

3.2.4.1 Fidelity energy

The objective function of the optimization problem describes our goal of staying
as close to the user input as possible. Our formulation extends the Projection
accuracy energy described by Xu et al. [56], to compare 3D curves, instead of
2D curves.

We want to minimize both variation in absolute position of the control points
P ki from the input positions P̄ ki and variation in the slope of Bézier polygon
edges eik = P ki+1 − P ki (see Fig. 3.8). This leads us to define the fidelity energy
as:

Efidelity =
1

|P ki | ∗ L2
∗
∑
i,k

||P ki −P̄ ki ||
2+

1

|eik|
∗
∑
i,k

||(P ki+1 − P ki )− ( ¯P ki+1 − P̄ ki )||2

|| ¯P ki+1 − P̄ ki ||2

(3.2)

We normalize each term by, respectively, the total number of control points
|P ki | = 3∗K+ 1 and the total number of Bézier control polygon edges |eik| = 3 ∗
K, K being the number of cubic Béziers. As our Bézier curves are all arbitrarily
subdivided, depending on both input stroke curvature variations and the number
of intersection constraints applied (see Sec. 3.2.4.2), we normalize these terms
so that we can later compare fidelity energy between different candidate results
(see Sec. 3.2.4.4). To the same end, we normalize the first term by a scale
factor L = maxi(||P̄ i0 − P̄ 0

0 ||) (an approximation of the span of the stroke)
and the second term by the initial lengths of the control polygon edges length
|| ¯P ki+1 − P̄ ki ||.

3.2.4.2 Geometric constraints formulation

In this section we provide details on how we express each of the geometric con-
straints mentioned in Section 3.2.3, in order to apply them in the optimization
problem.

As explained in Section 3.2.3.3, we differentiate between hard and soft con-
straints. We note c the hard constraints, which are quantities that we constrain
to be 0. We note E the soft constraints, which are quantities to minimize.
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Figure 3.8: Input stroke (grey) and optimized stroke (blue) to match the in-
tersection constraint ptarget

Additionally to the geometric constraints that we detect (Sec. 3.2.3), we also
enforceG1 continuity between the different Béziers of the cubic poly-Bézier curve
as a hard constraint. This is necessary to obtain smooth beautified curves.

Intersection constraint To constrain the poly-Bézier curve B(t)t ∈ [0,1] to
intersect a point ptarget, we decide to first compute the closest point on the
curve from ptarget :

p∗ = B(t∗) = min
t

(‖B(t)− ptarget‖) (3.3)

Then, if we are close from an existing control point Pκ0 , such that: ‖Pκ0 −p∗‖ < δ,
we will constrain that control point. Otherwise, we split the input curve at t∗
using de Casteljau’s algorithm. This yields a new control point on the curve
Pκ0 = p∗. In both cases, we express the hard constraint c as:

c = Pκ0 − ptarget = 0 (3.4)

We decide to split the input curve to allow for sets of intersections that may
not have been feasible with the original poly-Bézier curve, for lack of degrees
of freedom. We rely on the fidelity energy and the procedure described in
Section 3.2.4.4 to reject constraints that would deform the input too much, and
to select which constraint to apply at a control point if there are more than one.
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Closed curve constraint We express the constraint that enables the creation
of closed loops the same way as an intersection constraint between the endpoints
of the curve: P 0

0 the first control point and PK−13 the last (K being the total
number of cubic Béziers in the poly-Bézier curve).

c = P 0
0 − PK−13 = 0 (3.5)

G1 continuity constraint We want the poly-Bézier curve to have G1 con-
tinuity, even after the beautification process, meaning that we want to satisfy
some control point equality and tangent alignment between successive Béziers.

c = P k−13 − P k0 = 0 , for k ∈ [1,K − 1] (3.6)

c =
(P k−13 − P k−12 )

||P k−13 − P k−12 ||
− (P k1 − P k0 )

||P k1 − P k0 ||
= 0 , for k ∈ [1,K − 1] (3.7)

For the C0 constraint (Equation 3.6), we simply remove all control points vari-
ables P k0 , for k ε [1,K − 1] from the optimization.

For the G1 constraint (Equation 3.7), we linearize this constraint by approximat-
ing the norms of the control polygon edges by the initial norms: ||P ki −P ki−1|| ≈
||P̄ ki − ¯P ki−1||. Making this constraint linear enables us to solve the optimization
efficiently (see Section 3.2.4.3) and gives reasonable results in our use case.

Tangent alignment constraint We can constrain the tangent at a control
point on the curve P k0 to align with a target direction Ttarget:

E = ||(P k1 − P k0 )× Ttarget||2 (3.8)

Planarity constraint We can constrain all control points to lie in a plane of
normal ~n:

E =
∑

i∈{0,1,2}, k∈[0,K−1]

||(P ki+1 − P ki ) · ~n||2 (3.9)
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3.2.4.3 Solving the optimization problem

The complete optimization problem that we solve, for the control points position
variables {P ki }, i ∈ [0, 3] , k ∈ [0,K − 1], themh hard constraints and thems

soft constraints is:

min
{Pk

i }
Efidelity(P ki ) +

∑
j∈[0,ms−1]

Ej(P
k
i )

st. cj(P
k
i ) = 0 , for j ∈ [0,mh − 1]

(3.10)

The soft constraints energy functions Ej , and the hard constraints equations cj
are as defined in Section 3.2.4.2.

For each hard constraint j ∈ [0,mh − 1], we have n linear equations with k
variables, such that we can write the constraint as: cj = Cj ∗P|k = 0, Cj a n×k
matrix and P|k a k× 1 vector that corresponds to a subset of the control points
variables.

The objective function has a linear gradient, and all hard constraints are linear
so we can find the solution to this optimization problem by solving a linear
system (Equation 3.11), using the Lagrange multipliers method [36].

[
A CT

C 0

]
∗
[
P
Λ

]
=

[
B
0

]
(3.11)

We build A and B such that A ∗ P −B = ∂
∂P (Efidelity +

∑
Ej). The matrix C

corresponds to the stacked Cj blocks of the hard constraints. P are the control
points position variables, it is a vector with 3 ∗ (K ∗ 3 + 1) lines, one line per
control point coordinate. Λ is the vector of Lagrange multipliers.

3.2.4.4 Intersection constraints rejection

Prevent over-deformations. If we enforce all intersection constraints that
are detected (Sec. 3.2.3), nothing guarantees that we wouldn’t deform the input
stroke into something very different from what the user drew (see Fig. 3.9b).

In the set of m detected intersection constraints S = {Ci}i ∈ [1,m] there is a
subset S∗ ⊆ S of constraints that will not overly deform the input stroke when
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applied (Fig. 3.9b). To find this subset, we can solve for all the possible subsets
to obtain different candidates for the beautified result. We can then compare
the candidates and choose the best one, according to some metric. A similar
approach where multiple beautified candidates are generated from subsets of
geometric constraints is used by Igarashi et al. [25] and Fišer et al. [16] in 2D
beautification, and by Schmidt et al. [44] to infer depth from scaffolding strokes.

Figure 3.9: (a) An input stroke with all detected intersection constraints. (b)
Applying all constraints results in a very distorted stroke. (c)
Applying a subset of the constraints results in a stroke close to
the input.

Evaluate candidates. We need an appropriate metric to evaluate the can-
didate results obtained from each subset of constraints. The fidelity energy is
a good measure of how much the candidate deviates from the input. However,
the subset that results in the optimal fidelity energy would always be the empty
subset S∗ = ∅, as the output would be identical to the input stroke. We need to
balance our fidelity objective with a second objective. That is that we strive to
satisfy as many intersection constraints as possible, to beautify the stroke and
make it more regular.

Thus we define a regularity energy, to express this objective. Empirically, we
want this energy to make it costly to remove a constraint and also that it
becomes increasingly costly to remove more constraints. Like Schmidt et al.
[44], we observe that some constraints are more desirable than others, so for
different kind of intersections we define a different cost c per constraint (see
Fig. 3.10). We then compute the total energy of a subset S∗ ⊆ S of intersection
constraints as:

Eregularity(S∗) = e
−(CS∗

CS
)2 (3.12)
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Figure 3.10: Intersection constraint cost in different cases. (a) At a grid point.
(b) At an endpoint of the input stroke. (c) Intersection with
an existing stroke (black) (d) At an existing intersection in the
sketch.

with the subset cost C∗S =
∑
i ∈ S∗ ci, and the full set cost CS computed simi-

larly on all detected intersection constraints. The cost by constraint ci is defined
as in Figure 3.10.

Then, finding the best candidate subset boils down to finding a subset of con-
straints S∗ such that the resulting stroke control points P ki (from solving Equa-
tion 3.11) and the cost of the subset C∗S minimize the following energy:

E = λ ∗ Efidelity(P ki ) + (1− λ) ∗ Eregularity(S∗) (3.13)

The parameter λ expresses how important fidelity to the input is relatively to
regularity enforced by the intersection constraints. We find that λ = 0.85 works
well, after using the system extensively.

Greedy search on subsets. We decide to find a solution using a greedy
approach. Solving the linear system of Equation 3.11 is the most costly part
of the algorithm, and there is no way to pre-factor the matrices as they vary
depending on which intersection constraints are applied, and how the poly-
Bézier curve is subdivided. Therefore, we can’t afford to test every subset of S
(2|S| subsets).

We know that the set of intersection constraints that we initially have should
contain mostly valid constraints, as we only register a constraint if the input
stroke actually passes near the constraint position. What we really want to
do is reject the constraints that are superfluous, or incompatible with other
constraints. This case can arise for example in a zone with very high stroke
density, causing a lot of possible intersections to be detected (Fig. 3.11).
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We find a suitable subset while minimizing the number of times we need to solve
the linear system by starting from the full set of constraints S and iteratively
testing subsets from S formed by removing one element, until we don’t see
any improvement in the energy E (Equation 3.13). For example if we have m
constraints in a set Sm, we solve while applying all constraints and compute
the energy Em for this set. Then we solve for all m subsets of Sm formed by
removing one constraint. If the best of these subsets Sm−1 has an energy Em−1
lower than Em, we continue looking at smaller subsets of Sm−1. Otherwise we
stop and keep the subset Sm.

While this method doesn’t guarantee that we find the optimal subset, in practice
it gives good result in a reasonable amount of time, as there are usually not many
constraints that should be rejected (see examples on Figure 3.11).

Figure 3.11: Cases where too many constraints are detected. This is suscep-
tible to happen in areas with a lot of strokes (left), or in cases
where the input stroke is smooth but the potential constraints
do not form a smooth path (right). Some constraints are applied
(green), while some are rejected (red).

3.3 Surface inference

Similarly to how an artist defines a complex shape with only a few strokes on
a 2D sketch, one can draw 3D strokes that represent only sparse features of an
envisioned 3D solid shape. However, the free view-point navigation that a 3D
sketch offers - contrary to a 2D sketch - poses additional challenges to the artist,
as their work may be hard to read from some viewpoints (see Fig. 3.12). In this
section, we propose a method to address that challenge by automatically infer-
ring the surfaces that a sparse set of strokes represent, thus providing valuable
occlusion cues to help viewers understand the 3D shape.

To achieve this, we can first rely on our beautification algorithm (Sec. 3.2) to
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Figure 3.12: Sketch of a chair, without and with surface patches

form a well-connected curve network from the user’s input strokes. From the
intersection constraints that we apply on the strokes, we extract connectivity
information to build a curve network (Sec. 3.3.1). On the curve network we
need to infer which cycles should bound a surface patch, and which should
not (Sec. 3.3.2). In ambiguous cases, we will rely on user input to guide the
process (3.3.3). Finally, we generate geometry for the surface patch, so that we
can render it in the drawing (Sec. 3.3.4). We can further consider the surface
patches as a scaffolding entity in the sketch, on which users can draw strokes to
add small details (Sec. 3.3.5).

3.3.1 Curve network from intersecting strokes

Figure 3.13: Geometric representation of the sketch with strokes, and equiva-
lent graph representation of the sketch with segments and nodes.

We define a graph representation of the sketch, that we update after each stroke
addition or deletion operation. The graph contains all connectivity information
about the strokes. It is composed of segments and nodes:

• A node ni has a position in space. It also maintains a list of all its neigh-
boring segments.

• A segment has two endpoint nodes nA and nB . It is the restriction of a
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parameterized curve C(t)t ∈ [0,1] to an interval Is = [tA, tB ] bound by the
endpoint nodes nA and nB (see Fig. 3.13).

When a stroke is added to the sketch, we look at which intersection constraints
are applied by the beautification algorithm. These intersection constraints con-
tain a reference to the intersected stroke, from which we can find the corre-
sponding segment in the graph. Then we can update the graph by appropriately
splitting segments, and adding nodes.

Similarly, when a stroke is deleted we remove the corresponding segments from
the graph and merge the neighboring segments if necessary.

3.3.2 Automatic surface patch detection

In the graph representation of the sketch, we must decide which cycles most
probably bound surface patches that the user envisions. While there exists
methods to do so on a complete curve network [1, 57], in our case the curve
network is iteratively created by adding strokes to the sketch. We decide to
choose a local approach to trigger patch creation and deletion after the user
sketches or deletes a stroke.

First, we need an algorithm to walk the graph, searching for the most probable
user-intended cycles that contain a given segment. We then combine that algo-
rithm with an update mechanism to decide on which segments we should run
the algorithm after each user action on the sketch (see Appendix B).

3.3.2.1 Local cycle search algorithm.

Inspiration We adapt the method that Stanko et al. [48] apply on a 3D curve
network with normal information to our case where we do not have normals on
the curves as input. The intuition behind their method is that if the surface
represented by the curve network is smooth and manifold, at each node it is
possible to sort the segments around the normal vector at the node, so that at
a (Node, Segment) pair, we can always determine which segment comes next in
a cycle lying on the surface. This is similar to what can be done on a 2D curve
network (see Figure 3.14).

This method finds cycles by considering only local choices at nodes of the graph,
therefore we found it to be well-suited to our use case. It is indeed very easy to
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implement in our context of frequent local updates on the graph, that may only
break and create cycles among the neighboring segments. Compared to other
approaches that rely on evaluating curve pairings [57] or cycles [1] according
to some metric, the method we adopt doesn’t require us to list and compute
scores for such high-level objects. We progress along the graph according to
local geometric properties that we can compute on the fly.

Figure 3.14: Finding a cycle on a 2D curve network. (a) At a node, we can
sort the segments, and we take the next segment in clock-wise
order. (b) We go to the opposite node and do the same thing.
(c) When we reach the initial node again, we have found a cycle.

Defining normals at nodes The particularity of our case is that normals
are not known on the curve network. We do not exploit controller orientation
information, as we observed that users do not necessarily orient their hand
appropriately to convey the correct normal orientation at a stroke, as it would
require them to twist their wrist or move around the sketch a lot. However,
each node with 2 or more non collinear segments attached gives us a good
approximation of the tangent plane of the surface at this point, from which we
can compute the normal.

At each node with 2 or more non collinear segments, we compute a normal by
fitting a plane to the tangent vectors of the strokes at this point. Assuming
that the strokes represent a smooth surface, and that there are enough strokes
to correctly define it, this gives us a good approximation of normal directions
at each node. Still, an ambiguity remains in the orientation of the normals, as
we don’t know a priori which are pointing outwards or inwards with respect to
the surface that we are trying to find.

We lift this ambiguity locally, by comparing normal orientations in-between
neighboring nodes. Assuming that a curve segment lies on the envisioned surface
without significant geodesic torsion, parallel-transporting the normal ~NA from
endpoint A to endpoint B should give a vector ~NA‖B which approximately
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matches the direction of normal ~NB [37]. By transporting a node normal along
a curve segment [22], we can compare orientations of both normals from the
segment endpoint nodes. If they are consistently oriented, we can apply the
method explained before exactly. If they are oriented in opposite directions,
we should simply reverse the order in which we go around this node, by going
counter-clockwise instead of clockwise (see Fig. 3.15).

Figure 3.15: Finding a cycle on a 3D curve network. (a) At a node A, we can
approximate the tangent plane of the surface (with normal ~NA
and sort the segments in this plane. We take the next segment in
clockwise order (b) We go to the opposite node, parallel transport
the node normal ~NA to the node B, then compare orientations
between ~NA‖B and ~NB . (c) As the normals are oriented in op-
posite directions, we take the next segment in counter-clockwise
order around the node normal ~NB .

3.3.2.2 Limitations

The simplicity of the method we use induces a number of limitations. Indeed,
we make some hypotheses on the properties of the surface that we seek, which
happen to not always be true in a sketch. Here we present those limitations and
some alternatives, and in Section 3.3.3 we will present a user-guided fallback to
overcome failures to detect some surface patches.

Sharp features. The algorithm works reliably if we can assume that the
strokes describe a smooth surface, such that the normals that we compute at
each node correspond to the normal of the intended surface at this point. If
that’s not the case, for example if the neighboring strokes of a node define sharp
features, there is no guarantee that we can compute a sensible tangent plane
and normal, and in consequence, the segments can’t be reliably sorted at this
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node.

We strive to limit the failures caused by sharp features, which we found to be
very frequent in the sketches, by using an alternative heuristic at such nodes
(see Fig. 3.16). We detect when there is no consistent tangent plane at a node
by looking at the error from the plane fitting operation we do to compute the
normal. If it is above a threshold that we empirically define at εsharp = 0.3,
then we label the node as being sharp.

At such a node B, we know that we can’t rely on sorting nodes around the node
normal ~NB to decide which should be the next segment (Fig. 3.16a). Instead,
we will rely purely on the transported normal from the previous node ~NA‖B .
First we exclude the segments that are not close to being in the plane defined
by ~NA‖B , and sort the rest around ~NA‖B . Then we choose the next segment,
in the same order (clockwise or counter-clockwise) as before (Fig. 3.16b). This
heuristic is based on the intuition that the parallel-transported normal from the
previous node should be a good guess of the normal in the vicinity of the sharp
node, on the side of the patch that we are trying to find. Therefore we only
look at segments that approximately lie in the tangent plane defined by the
transported normal.

Figure 3.16: (a) At a sharp node B (blue), the node normal is ill-defined. We
cannot use it to determine which of the neighboring segments
(blue) should be the next segment in the cycle (grey). (b) We
exclude the segment (red) that is not in the plane defined by the
parallel-transported normal ~NA‖B and choose the next segment
in clockwise order around ~NA‖B among the remaining options
(blue). (c) The cycle is detected successfully.

However, the limitation remains in cases where a sharp feature is defined with
not enough strokes to form clear sharp intersections (see Fig. 3.17). In this case,
adding more strokes can fix the issue.
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Figure 3.17: In some cases there are not enough intersections in the sketch to
successfully detect cycles. Adding strokes provides more cues to
the algorithm, which has more chances of succeeding.

Trim curves. Our method to disambiguate the normal orientations by using
parallel-transported frames (or Bishop frames) along the curve relies on the hy-
pothesis that the curve lies on the intended surface without significant geodesic
torsion. Curves on a surface with no geodesic torsion are aligned with curva-
ture lines of the surface, and have been found to be frequent in 2D sketches
[24, 37]. We argue that this is a good hint that most curves in the 3D sketch
should present that property too. However, there are cases where the curves
instead represent trim curves of the surface and are not aligned with curvature
lines (Fig. 3.18a). Along such a curve, the tranported normal ~NA‖B may be
very different from the actual surface normal at the node ~NB (see Fig. 3.18b).
Therefore, comparing those normals will not yield meaningful information on
their respective inwards or outwards orientation with respect to the surface, as
the directions between them may widely vary.

Figure 3.18: (a) A chair sketch that comports trim curves (blue). (b) We
see that the surface normals (blue) do not correspond to parallel
transported families of vectors along the trim curves. Therefore,
~NA‖B does not match the direction of ~NB , as it would on a

curvature line. (c) We disambiguate this case to find the next
segment in the grey cycle by looking at the projections of segment
directions ~s⊥ in the plane defined by ~NA‖B .
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In such cases, at a node B where we detect that the segment between A and B
is a trim curve ( ~NA‖B and ~NB have very different directions), we make an at-
tempt at choosing whether to go in clockwise or counter-clockwise order around
B by projecting main segment directions on the plane defined by the parallel
transported normal ~NA‖B (see Fig. 3.18c). This amounts to look at the main
shape of the patch that would be formed by choosing each one of the segments.
This is more reliable than looking at the local tangent plane at B, where we
cannot disambiguate normal orientation. This is quite hazardous, for one it is
not clear what we should define as "main direction" for a segment. We take the
line between the endpoint nodes of the segment, but for a very long and curved
segment this can be quite misleading. However, it does manage to sort out a
number of cases like the one in Fig. 3.18.

Non-manifold objects. In the automatic cycle detection algorithm, we as-
sume that each curve can’t bound more than two cycles. This works well if
the surface that is intended is a manifold surface. In sketches, it is relatively
common that one wishes to create non-manifold surfaces, for example to add
the wing on a plane (see Fig. 3.19). While the final visible surface of the plane
may be a manifold surface, while the user is sketching the wing, they may be
temporarily in a non-manifold configuration. To alleviate the frustration that
these cases can raise, we add the possibility for the user to enforce the creation
of a non-manifold surface (see Section 3.3.3).

Figure 3.19: The wing of the plane is not surfaced correctly near the base
because the automatic algorithm forbids the curves at the base
(blue) to bound 3 patches.

Reliance on tangent directions at intersections This method relies quite
heavily on how well tangent directions on curves at intersections describe the
underlying surface curvature. This will cause issues if the tangent directions
are susceptible to be badly distorted near intersections, for example near stroke
endpoints. This dependency made implementing hooks removal as a pre-process
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(Section 3.2.2) highly necessary for the patch detection algorithm to work reli-
ably, as hooks typically distort the stroke curvature near the endpoints.

3.3.3 User guided patch creation

To overcome the limitations of our patch detection algorithm mentioned in Sec-
tion 3.3.2.2), we rely on the interactive nature of our system to let the user guide
the patch formation process.

We let the user trigger patch creation by positioning their controller near the
center of the patch that they envision, and clicking a button.

We then use this position information to find the closest stroke segment, then
walk along the graph by always choosing the segment that goes most towards
the direction of the input position. We do not limit our search to manifold
surfaces, so we also look at segments that already bound two patches.

Figure 3.20: (a) The user positions their dominant hand (blue dot) near the
center of the patch that is missing and clicks. (b) The patch is
detected.

This rather simple algorithm works in most cases, provided that the patch is
small enough such that its center is defined without ambiguity with respect to
the neighboring strokes. The users can always add more strokes to the sketch
in case the patch that they envision cannot be created in this way.

3.3.4 Surface patch geometry

Once we know which cycles bound patches, we can generate a triangle mesh
that fills that cycle. First, we triangulate the closed 3D curve formed by the
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cycle segments to get a triangle mesh topology and initial vertex positions, then
we remesh and smooth the surface.

We choose to use existing methods for which we have available source code
in order to get a result efficiently, without having to delve in depth into the
implementation.

Figure 3.21: (a) Boundary curve. (b) Boundary curve triangulation. (c)
Isotropic remeshing. (d) Smoothed mesh.

Triangle mesh from patch boundary We directly apply the algorithm
by Zou et al. [58], for which the C++ source code is provided. We call the
triangulation source code from the run-time application as a Unity native plug-
in [50] by providing a C interface to native code and compiling it as a shared
library.

We give as input a list of vertices on the boundary of the cycle to the triangu-
lation plug-in (Fig. 3.21a), and get as output a triangle mesh with vertices and
face indices (Fig. 3.21b). However, before sending the mesh back to the runtime
application, we process it to make both the mesh and the shape smoother.

Mesh processing When the patch is triangulated, we refine it in 2 steps,
using the C++ CGAL geometry processing library [51]:

• We isotropically remesh the interior while constraining the boundary, so
that all edges become close to a target edge length (Fig. 3.21c).

• We smooth the shape using CGAL’s implementation of the curvature flow
algorithm [11, 28] (Fig. 3.21d).

While this process provides us with a smooth mesh, the shape of the mesh
does not necessarily match user expectation. Indeed, the smoothing operation
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minimizes membrane energy which makes the surfaces tend towards minimal
surfaces. This is why they look like "soap bubble films" (see Fig. 3.22a). To ob-
tain more intuitive results for the surfaces, we could apply methods to optimize
the mesh curvature to match curvature of the input curves, such as the work of
Pan et al. [37] or Stanko et al. [48]. Using the algorithm of Stanko et al. [48] by
giving as input normals on curves extrapolated from the normals at nodes of the
curve network, gives better results than our smoothed surfaces (see Fig. 3.22).
However, for lack of time, we didn’t fully integrate their method in our runtime
application. The main challenge is to compute correct normal information for
each boundary curve. The normals that we compute at each node have ambigu-
ous orientation, so it is not trivial to extrapolate them on the curve. Moreover,
our surface patches are computed one at a time, so we must be careful to always
consistently orient normals across patches that share a boundary curve.

We settle for these "soap bubble" surfaces, which still fulfill the initial goal of
providing valuable occlusion cues. The user can always define the surface more
precisely by adding strokes to stretch the surface, as if they were adding support
rods to a tent structure.

Figure 3.22: (a) Our result. (b) Surface is better aligned with user expectation
using [48].

3.3.5 Drawing on surfaces

We enable users to use the surfaces as solid scaffolds to sketch on. They can
thus create small details or pieces with a base lying on an existing surface in
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the sketch (see Fig. 3.23). To do so, we first automatically detect which input
strokes are intended to lie on a surface patch. Then we project the stroke so
that it appears to lie on the surface.

Figure 3.23: (a, b) The input stroke (grey) is neatened to lie on the surface
patch. (c) The user draws a horn attached to the patch.

Detecting on-surface strokes. When the user sketches a new stroke, we
classify it as being either a standard stroke or a stroke intended to be drawn
precisely on a surface patch. The criteria to decide whether the stroke is an
on-surface stroke on a surface patch Siare:

• Proximity. All points on the input stroke are within a distance 2 ∗ δ of Si.

• Alignment. The start and end tangents of the stroke are not within an
angular threshold θ of the normal of Si at the nearest point from stroke
start and end points.

• Non-breaking stroke. The stroke does not break the cycle that bounds the
patch Si.

See section 3.2.3.1 about the threshold values δ and θ mentioned here.

We allow both stroke endpoints to be neatened to lie on one or two different
surface patches if they follow the proximity criteria. This can be useful to draw
a handle on this basket for example (Fig. 3.24).

Neatening on-surface strokes. To correct the input stroke such that it
seems to lie on a surface patch, we choose to simply project its control points
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Figure 3.24: (a) The input strokes (grey) are neatened so that the endpoints
lie on the patches representing the top of the basket. (b) The
user continues to sketch the handle.

on the patch. This does not rigorously make the entire stroke lie on the patch,
as Bézier curve points are weighted averages of the control points and taking
a linear combination of points on a surface does not necessarily yield a point
on the surface except on a plane. However, it looks correct in most cases, by
rendering all surface patches slightly further in the depth direction than the
strokes.

A better approach to do that could be to compute the correct on-surface posi-
tions for the points of the Bézier curves by computing weighted averages on the
surface [38].

For simplicity, we choose to apply this on-surface projection as a post-process
to the rest of the beautification process (Sec. 3.2). A more unified approach
would be to integrate the on-surface constraint as a geometric constraint in the
optimization problem that we solve for beautification. This could prevent over-
deformation of input by enforcing fidelity, as we do for the other constraints.

Limitations. We observe that it is not easy to draw consistently in the prox-
imity of a surface, especially for longer strokes or on very curved surfaces. To
limit the precision and effort required to draw strokes on surfaces successfully,
we could have a specific sketching mode where strokes would be projected on a
surface patch selected by the user. This could be similar to the interaction in
EverybodyLovesSketch [5] where the user can select a surface bound by strokes
to define it as a temporary sketching canvas where the strokes will be projected.

Having a specific mode to sketch on the surface could also lift the ambiguity
between strokes that should connect to the network that defines the surface,
and strokes that should simply lie on the surface. It is indeed quite difficult to
sketch in the interior of a patch without accidentally getting close to the strokes
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that bound the patch, which may trigger undesired beautification.

Finally, an interesting yet unresolved aspect of having strokes lying on surfaces is
a way to gracefully deal with the strokes when the underlying surface is deleted,
or modified. In the current prototype, we simply leave the strokes hanging
mid-air, but we could imagine trying to project them on the nearest remaining
surface for example.
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Results

We build a prototype virtual reality application combining all the ideas exposed
in the previous chapter. Here we present the user interface for this application
(Sec. 4.1), and how we evaluate it. To evaluate this project, we create a variety
of 3D sketches with it to demonstrate its versatility and expressivity (Sec. 4.2.1).
Then we conduct a user study to evaluate how well this interface can help users
explore 3D designs in virtual reality (Sec. 4.2.2).

4.1 User interface

The user interacts with the application through two tracked VR controllers,
one in each hand. They wear a VR headset to view the scene from different
viewpoints, in stereo. The only restriction we impose on hardware is that it
should be compatible with SteamVR [53], which is the case for the most common
headsets (HTC Vive, Oculus headsets and Valve Index). The user interface is
also showcased in the video created for the user study (Appendix C).

To get an idea of how the different actions we mention in this section are mapped
to a VR controller, please refer to Appendix D to see action to button mappings
for the SteamVR supported controllers.
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4.1.1 Draw and delete

The main interactions are to draw strokes and to delete elements (either a stroke
or a surface).

Drawing is done by pulling the trigger button on the dominant hand controller,
which is similar to the drawing interaction in other VR creation applications
such as TiltBrush [17] and GravitySketch [20].

Deleting an object is done by bringing the dominant hand close to the object
that needs to be deleted, and clicking a button. When the dominant hand is
close enough to the object such that a click will trigger deletion, we shade the
object differently with a red color, to signify that it is selected for deletion (see
Fig. 4.1).

Figure 4.1: When a stroke or surface patch is selected by the user by putting
their dominant hand (blue dot) in its proximity, the object be-
comes red.

4.1.2 Navigation

To enable the user to navigate in the scene as they draw without having to
physically move around, we adopt a "grab and move" interaction metaphor.
We also allow the user to scale up or down the drawing volume with a two-
handed gesture. Both of these interaction metaphors are found in other VR
applications [17, 20] and should therefore feel familiar to experienced VR users.
For novices, they still quite natural as they mimick real-life 3D manipulation
(for grab and move) or usual 2D touch-screen interactions (for zoom).

Grab and move. By pressing a button, the user starts grabbing the whole
drawing volume. They can then see their hand motion mapped to a translation
and rotation of the drawing volume in real-time. We display the grabbing hand
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in a yellow color to signify grabbing. When they release the button, the drawing
volume is fixed again in the position they left it on release. We implement this
interaction following the method described by Robinett and Holloway [40].

Scaling. By pressing a button and moving both hands further apart or closer
together, the user sees the scene scale up or down around them. We display the
current zoom level and a line between both hands, as a cue that scaling is hap-
pening (Fig. 4.2). When the user releases the button, the scene scale becomes
fixed again. We use scaling as a way for the user to signify their intent to be
more or less precise: when the scene is zoomed in, the trigger zone around an
element to select it for deletion becomes smaller, which makes it easier to select
something in a cluttered area of the sketch. Moreover, as mentioned in Sec-
tion 3.2.3.1, the distance threshold that rules over the beautification algorithm
becomes smaller when the drawing is zoomed in, making it possible to avoid
some undesirable snapping of strokes, which is also very convenient when the
stroke density gets higher. We implement scaling as described by Robinett and
Holloway [40], such that the dominant hand is the origin of the scale operation.

Figure 4.2: The user is scaling the drawing.

4.1.3 Helper objects

Finally, we add to the interface a few helper objects to assist the user in the
creation process.

3D grid. We display a 3D grid composed of points and thin lines, that covers
the whole drawing volume. The grid points also serve as intersection targets in
the beautification process (see Sec. 3.2.3).
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Figure 4.3: The grid can be used as a scaffold to define the proportions of this
chair in the early stage of the sketch.

The 3D grid has two purposes. First it serves as a scaffold structure that the user
can rely on to build their 3D sketch (Fig. 4.3). It is inspired by previous work on
2D sketching interfaces [5, 44] that use scaffolding elements to help users define
shape and position in space of their strokes. Moreover, in the context of VR
3D sketching, it helps the user perceive scale in the depth direction correctly,
which has been found to be difficult [2, 34]. Machuca et al. [34] also advised to
use visual guides to provide depth cues, which the regular 3D grid achieves.

To prevent cluttering the user’s field of view, we display the grid only in the
vicinity of their dominant hand, and gradually fade its visibility away from
it. The grid lines help the user perceive the main orthogonal directions of the
drawing space, which can serve as beautification targets for lines, or for planar
strokes (Sec. 3.2.3).

We also link the grid resolution to the scaling factor, such that when the scal-
ing of the drawing volume reaches double the initial scale, we double the grid
resolution. This enables users to get more precise measurements while zoomed
in. A further step would be to make the grid resolution customizable, as in
EverybodyLovesSketch [5].

The grid is procedurally generated by combining a vertex shader and a geometry
shader. The vertex shader generates the regular grid point positions, given a
resolution, the number of desired points and a position for the grid origin. Then
the geometry shader generates vertices for view-aligned circles and lines, to
render the grid points and lines. It is therefore easy to edit the grid resolution
in real-time.
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Mirror plane. We add a planar mirror to the drawing scene, to help the user
draw symmetric objects. The user can draw a stroke on one side of the mirror,
and its symmetric will automatically appear on the other side of it.

To enable the mirrored strokes to serve in further patch creation, we must put
some care in updating the stroke graph correctly, for example connecting strokes
that have one endpoint on the mirror to their symmetric. We also assist the user
in using the mirror by adding points on the mirror plane that come close to the
stroke as potential intersection constraints (Sec. 3.2.3). In this way it becomes
easy to draw a closed path by drawing only one side of it, ending the stroke in
proximity of the mirror (Fig. 4.4). We also automatically project strokes that
lie close to the mirror to perfectly lie on it, as it is usually what the user intends.

Figure 4.4: The user draws on only one side of the mirror (grey stroke) and
the result is a closed path obtained by constraining the stroke
endpoints to the mirror and creating the symmetric stroke.

We mirror all stroke creation and deletion operations. However, for lack of
time, we do not leverage the mirror for the patch creation and deletion process.
To find surface patches, we simply apply the same method on new strokes on
either side of the mirror. Nevertheless, we mirror user requested patch addition
(Sec. 3.3.3), to alleviate the user’s work in adding missing patches.

We display the mirror as a planar grid with thin grey lines, to help users perceive
where it stands in space (see Fig. 4.4).

Intersections visualization. Stroke intersections play a crucial role in the
correct formation of surface patches. We provide the user with cues that an
intersection was detected correctly, in order to facilitate their understanding of
the underlying network, which can help them diagnose why some patches are
not correctly inferred. We display all intersections as small black dots with low
opacity (see Fig. 4.5).
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Figure 4.5: The intersections are displayed as little black dots. Here it is easy
to see which intersection was not enforced in the sketch.

4.2 Evaluation

We evaluate whether our system can help users create 3D concepts by sketching
in VR. We were initially inspired by traditional sketching, which is a way for
designers to express their ideas in a quick and inexpensive way, with a minimal
amount of details to leave room for idea exploration rather than give a precise
specification of the shape (Sec. 1.1.1). At the same time, we proposed to alleviate
the imprecision challenge of 3D sketching and provide adequate visualization of
the sketch as it is created (Sec. 1.1.2). We seek to verify whether our prototype
fulfills some of these qualities.

First, we show a variety of 3D sketches created by an expert user of the appli-
cation, to demonstrate its potential and analyze performance of the automatic
surface detection method (Sec. 4.2.1). Then we conduct a user study with 4
participants to test whether the system is intuitive to learn and use for novice
users, and provide them with some benefits compared with free-hand 3D sketch-
ing (Sec. 4.2.2).

4.2.1 Sketches and analysis

In this section we present a few 3D sketches created by someone familiar with
the system. All sketches were done in a short amount of time, which includes
time needed for exploring multiple possibilities for each sketch (see Table 4.1).
The mirror plane was used for symmetric shapes such as the vacuum cleaner
or the sewing machine. The artist often based the 3D sketch on a 2D photo
reference, that they would examine before starting the sketch in VR. No existing
3D models were used however.
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Qualitatively, we confirm that the system permits a great level of versatility in
the shapes that can be created. We observe that the system allows for the quick
creation of free-form surfaces, such as the folds of the dress, or the architectural
structure, which can be first roughly defined with a few strokes, then refined
locally to achieve the desired complex curvature.

By looking at the results we can see that the surfaces greatly help in understand-
ing the 3D shape that is represented by the strokes, from multiple viewpoints.

We observe that the "draw on surface" feature is mostly used to draw small
attachments on the surfaces, such as the feet of the chair, the buttons on the
sewing machine and on the mouse or the spikes on the shield. We do not see
much interest in drawing textural details on the surface, which is coherent with
the idea of keeping the sketch at a low detail stage, to focus on exploring the
form.

Figure 4.6: 3D sketches created by an expert user with the prototype appli-
cation.

We also measure the number of patches detected for each sketch, both those
created automatically by the cycle detection algorithm (Sec. 3.3.2) and those
created by the semi-automatic procedure (Sec. 3.3.3). These quantities (see Fig-
ure 4.7), give us an overview of the performance of the cycle detection algorithm.
The numbers may be slightly skewed in favor of the algorithm because we don’t
count the false negative patches (detected patches that were not correct and
had to be deleted by the user), however this case happens rarely, as it is more
often a case of missing a few patches.
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Table 4.1: Completion times for all models (min)

Computer mouse 6:40
Flower 8:43
Shield 4:57
Guitar 15:18
Vacuum 7:14
Chair 9:54
Dress 9:10
Sewing machine 12:34
Hat 10:17
Architecture concept 1 11:43
Architecture concept 2 18:50

We see that the amount of manual input for patch detection depends on the
sketch. For example, the guitar sketch is the one that required the greatest
amount of manual input to find all surfaces correctly (83 patches found fol-
lowing a manual "add patch" input). This is coherent with our discussion in
Section 3.3.2.2, where we showed that the automatic cycle detection will be more
or less successful depending on the type of surface that the user is trying to rep-
resent. The guitar is typically an object with many sharp edges, which explains
the poor performance of the algorithm. Similarly, the chair also has a rather
high count of manual patch detection (41 patches), which can be explained by
the presence of edges that bound more than 2 cycles at the junction between
the back rest and the seat. This local non-manifoldness is also one of the known
limitations. On the other hand, we see that the automatic cycle detection per-
forms very well on smooth surfaces such as the free-form roof (Architecture 2),
with only 5 missed patches.

While the amount of manual input necessary to find the surfaces in the worse
case seems quite high, we should keep in mind that the user only had to do
about half of these actions in most cases. When the mirror is used (as is the
case for the guitar and the chair), such inputs were mirrored too, making it easy
for the user to add missing patches on both sides of the mirror.

4.2.2 User study

To evaluate how our system can be learnt by novice users and help them in 3D
sketching, we conduct a user study among a small group of people. The goals of
this study are to test the core functionalities of the system, beautification and
automatic surfacing, and observe whether such a workflow helps users in creat-
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Figure 4.7: Surface patch detection performance. We measure the amount of
surface patches detected automatically and manually for a variety
of sketches by a user familiar with the system.

ing 3D concepts. We will compare our complete system (called Patch system)
against two degraded versions:

• Armature system: without automatic surface inference (the

• Freehand system: without surface inference nor beautification, which is
the standard 3D sketching condition.

4.2.2.1 Protocol

Participants. We recruited 4 participants (age 25-50, 1 female) for this study.
Participants were professional artists (P1, P4) with prior experience in sketching
for product design or researchers in Computer Graphics or HCI (P2, P3). All
participants were familiar with VR, having been using it for at least a year,
some participants (P1, P4) using it once a week or daily. P1, P2 and P4 also
indicated being familiar with CAD or 3D modelling software, such as Blender,
ZBrush and MasterpieceVR. All participants were compensated for their time.

Procedure. The study was conducted remotely, at the participant’s office
or home and with their own VR hardware. We were present during the study
through voice and video chat, with the possibility to see their screen and provide
appropriate guidance and troubleshooting. The study lasted around 1h15 to
1h30.

One day prior to the study, we sent to all participants a short prompt explaining
the task that they would have to complete. The prompt explained what objects
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the participant would have to sketch and showcased a few wireframe objects
from True2Form [56], to give an example of the sketching style that they would
have to adopt.

The participants started the study by watching a 10 minutes video tutorial,
where we explained what they would have to do during the study (see Ap-
pendix C to watch the video). We started by explaining the different features
that each of the 3 systems (Freehand, Armature and Patch) present. Then we
explained some study specific aspects, such as the full plan for the study and
the different models that they would have to draw. Finally we gave some high-
level tips to overcome known limitations of the system, and to reduce muscular
fatigue. After watching the video, the participant could start the study, which
is composed of a tutorial phase, then a study phase.

Each participant had a different order in which they were presented with the
3 systems, to limit effects such as learning to affect the results. This order
was applied to both the tutorial phase and the study phase. Each task, both in
tutorial and in study phase was to sketch a single model with one of the systems.

During the tutorial phase, the participants had to sketch a computer mouse
model, with each of the 3 systems. They had the possibility to use the mirror
plane, in order to draw only half of the object.

During the study phase, the participants had to sketch 2 models with one of
the 3 systems (each sketch lasting about 5 minutes), then they had a break and
filled-out a short form about the system they used. Then they would do the
same with another one of the systems.

The 2 models we asked them to sketch are:

• A desk lamp

• A running shoe

For each of the models (mouse, lamp and shoe) we provided the participant with
a rough box volume that indicates the scale and position at which they should
sketch the object. This was necessary to encourage the participants to sketch at
a scale that is appropriate, with respect to the beautification threshold distance.

Additionally, we provided the participants with a cheatsheet with all the controls
available in the application, and displayed it in VR so that they could always
refer to it, even once the study started (see Appendix D).
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When all tasks were done, the participants could quit the application, send us
the data collected during the study and fill-out a post-study questionnaire.

4.2.2.2 Results

We present the results obtained from the user study and provide a qualitative
analysis of user’s creation, by discussing the differences between the sketches
created with each of the 3 systems. We also measure how well the beautifica-
tion method satisfies user intent, and provide the same metric as in the previous
section to evaluate automatic surfacing. Finally, we summarize qualitative feed-
back from the users.

Difference between sketches from different systems. We showcase the
participants’ creations in Figure 4.8. In this section we will discuss qualita-
tive differences between the sketches, trying to find common points of variation
between different users.

We observe that multiple users (P1, P2 and P4) seem to have adopted a very
different sketching style between the Freehand system, and the other 2 systems.
In Freehand, (first 2 columns Fig. 4.8), they sketch with a style that presents
a lot more surface details, like small notches (P2) or details such as the laces
(P1) on the shoes, small elements like springs on the desk lamp (P1). P4 goes
even further and creates very dense sketches, where the strokes almost intend to
form a continuous surface. To quantify this tendency, we can look at the counts
of strokes sketched for each system and model by the participants (Fig. 4.9).
We see that P2 and P4 draw more strokes in Freehand, compared to the other
2 systems, but P2 also deletes more strokes in Freehand, which makes the end
count difference not significant. Similarly for P1, the difference is visible but
not significant and the effect is absent completely for P3, which seems to sketch
almost the same thing for each system. Other metrics may be more useful in
exploring this difference that we observe, such as stroke length for example.

This observation could lead to the following interpretations. First, the beautifi-
cation of the Armature system discourages users from drawing too small details,
as the distance threshold is chosen to work well when sparse network of strokes
are sketched, not in very dense zones of strokes. Secondly, in the Armature
system, users are empowered to sketch well-connected networks of curves that
form the armature of the object. Therefore, we hypothesize that this lifts the
need for them to suggest ill-defined positions in 3D space by sketching more
textured details. The precision of their neatened strokes may encourage them
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to build the overall shape of the object, rather than precising the sketch with
little details.

Finally, when the Patch system is used, this should further relax the necessity to
draw as many strokes as in the other systems to define the shape of the object.
We do not observe significant variations in number of strokes used however.

While we see qualitative differences in user behavior and results when using
the different systems, the fixed tasks, limited time and limited number of both
tasks and participants makes it difficult to obtain clear conclusions from the
quantitative data that we analyzed. In future work, we plan to extend the study
to more participants and analyze the data more in-depth, for example looking
at how the constraints are used throughout a sketching session in Armature or
Patch system, and at the timeline of interactions during a sketch.

Figure 4.8: User sketches from the study. Each row is one user (P1 to P4,
from top to bottom). Each 2 columns correspond to one system,
in order: Freehand, Armature, Patch.

Measuring satisfaction regarding beautification results. We measure
whether the participants are satisfied by the beautification results generated in
the Armature system by measuring the relative life time of a stroke in their
sketch. We compute the stroke relative life time L as a function of its creation
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Figure 4.9: Number of strokes sketched and deleted in every system, for each
participant and model. M1 is the desk lamp and M2 is the running
shoe.

time tadd, its deletion time tdel, and the time at which the drawing is completed
Tsketch:

L = 100 ∗ tdel − tadd
Tsketch − tadd

(4.1)

A stroke that ended up not being deleted will live until the end of the sketch. It
is a stroke that the user is satisfied with, and it will have L = 100%. A stroke
that gets deleted a very short time after its creation will have a small L, and it
is a good indicator that the user is not satisfied with it.

We plot the strokes life time for the desk lamp sketch in the Armature system
for the 4 users (Figure 4.10). We observe that for all users we have a majority of
strokes that have a relative lifetime above 20% of their expected life time, which
means that the user was satisfied with the result. It is not a large majority,
especially in the case of P2. We think that this raises an interesting point
concerning the rather stiff nature of our sketching and beautification framework,
which does not allow for further editing of a stroke once it is created. It leaves
the user with only the binary choice to keep or delete the entire stroke. This
can be quite frustrating when only a small part of the stroke needs editing.

Surfacing performance. We measure the performance of the automatic sur-
facing algorithm in the same way as in Section 4.2.1.

While the number of patches that the users had to manually indicate varies, we
see that it stays relatively small compared to the amount of patches detected
automatically during the sketch. There are also cases where the user failed to
surface a patch, even with the manual method. We can see the missing patches
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Figure 4.10: Stroke relative lifetime (as a percent of potential lifetime) for 4
users drawing the desk lamp with the Armature system. Stroke
lifetime, or the time before a stroke is deleted, can show how
satisfied the user is with his result. A very short lifetime indicates
that the user deleted the stroke right away, because it did not
satisfy them.



4.2 Evaluation 55

on some of the results (Fig. 4.8). This can happen when the curve network
is not correctly connected, with some intersections missing, or when the users
add a lot of strokes that define details such as the laces, contrary to the usual
structural strokes that the algorithm expects (see the shoe of P3 in the last
column, Fig. 4.8).

Figure 4.11: Surface patch detection performance. We measure the amount of
surface patches detected automatically and manually during the
sketches with Patch system by all users. We manually count the
patches that seem to be missing from the final sketch, to account
for places where both automatic and user-guided surfacing failed
(or the user forgot to add a patch). M1 is the desk lamp and M2
is the running shoe.

Qualitative feedback. All participants showed great interest and enthusiasm
towards the Patch system. They validate our hypothesis that surface patches
greatly improve visualization of the 3D sketch.

P5: I think it helped in visualising the end result before I get there

P2: It allows users to define surface without many lines which can
clutter a design and possibly de-emphasise important features that
need line defininition.

One participant expressed that the Armature system didn’t help them in ex-
pressing an idea, as it was too constraining. This is in part because of the strong
smoothing applied on strokes, as they do not support having sharp corners. This
is not an issue inherent to our method, so we could remedy to it in the future.
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Multiple participants expressed that they would have liked an option to disable
beautification temporarily, or cancel it on a stroke, in order to avoid failure cases
where they would draw strokes really close to each other without intending them
to touch. One particular failure case that multiple users encountered is when
trying to draw close-by parallel strokes, it is common for the strokes to be
beautified such that they lie on top of each other.

One participant expressed that they would like the option to hide all or parts of
the strokes that define the surface patches, as they would like less lines in the
final design.

Finally, a participant stated that they would like to be able to further edit the
curve network shape, by pulling on the strokes, as if the sketch was a wire sculp-
ture. This idea is similar to what Nealen et al. [35] apply in a 2D sketching ap-
plication, which was adapted to VR inputs by Verhoeven and Sorkine-Hornung
[54]. It could be an interesting avenue to explore, to provide more ways for the
user to edit strokes after they are sketched, rather than having to delete them
and restart.



Chapter 5

Conclusion

In this thesis we present a complete method to create 3D sketches in VR, based
on a sparse set of strokes that automatically connect to form an armature on
top of which the intended surface is displayed.

The user study provides us with some qualitative evidence that automatic sur-
facing combined with stroke beautification provide value to users, by enabling
them to focus on creating the overall form of the object rather than its details.
We validate that our prototype is usable for novices, and that experienced users
can achieve satisfying results on a variety of sketches.

However, the user study surfaces a number of limitations with opportunities for
future improvements.

Lack of flexibility. As of now, the sketching workflow is quite stiff, as there is
no way to edit or even delete some parts of a stroke, it is only possible to delete
the whole stroke and redraw it. This can lead to user frustration, as it is quite
annoying to have no way to correct one’s small mistakes. One promising avenue
of improvement that continues to leverage sketching as the main interaction
could be to allow over-sketching a stroke to edit it, as in ILoveSketch [4].
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Beautification weaknesses. We observed during the user study that the
success of the beautification method is very dependent on finding good threshold
values for a particular user. One solution would be to let the threshold values
be customizable. However, it also seems like finding an appropriate threshold
value that will work for a whole sketch is a hard task in itself. Maybe a more
sophisticated approach would be to find other ways to make the thresholds
dependent on context, as we did with the zoom dependent distance threshold.
One idea could be to look at user sketching speed, drawing fast being associated
with a more care-free gesture which we should beautify stronger than a very
slow and meticulous stroke, similar to what Thiel et al. [52] proposed in 2D.

Another weakness of our beautification approach is that it does not take stroke
similarity into account. We observe multiple cases where users do not wish
their stroke to intersect another stroke, whereas they wish their stroke to be
an offset curve from the other nearby stroke. By measuring stroke similarity,
we could both detect and enforce these constraints as in ShipShape [16], but
also forbid the beautification to make similar strokes completely overlap, as it
happens sometimes currently.

Automatic surfacing. While our initial idea for automatic surfacing was very
simple, we encountered many edge cases that needed to be taken care of, which
led the overall algorithm to be not always reliable. Another option would’ve
been to use an existing method that works on a complete curve network such
as the cycle detection by Zhuang et al. [57]. However this may have been more
difficult to optimize in order to maintain an interactive framerate. We could
also have relied on more explicit user input, such as asking the user to specify
when there stroke closes off a surface patch, by using a specific tool or sketching
mode.

The surface update mechanism ruled by stroke addition and deletion is hard to
control in a way that doesn’t surprise the user. Indeed, some patches may be
broken involuntarily when the user adds a stroke in a neighboring area. It is
difficult to judge whether a stroke was meant to break and replace a particular
patch or not. Similarly, some patches that the user explicitly deleted previously
may be detected back again automatically. Making this process more conform
to user expectations with regards to preserving desired patches consistently is
difficult to achieve automatically. A user-guided approach could be to ask the
user to "solidify" the patches with which they are happy, by marking them in
the interface in some way, so that they won’t be affected by further sketching.

Finally, the geometry of the surface patches could be optimized to better match
the intent defined by the strokes, so that less strokes are required to define a
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satisfying surface.

Drawing on surfaces. Drawing strokes projected on the surfaces is some-
thing that seemed to be of interest to our participants in the study, but that
still needs work to be fully usable. A set of interesting possibilities and new
questions can be raised by looking more in-depth into how the strokes that lie
on the surface should behave, for example maybe a closed-loop could define
holes in a surface patch. However, we also observe that it is inherently difficult
for users to draw precisely on or near a surface that lies in 3D space. The best
way to do so may be to use 2D input, as in SymbiosisSketch [3].
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Appendix A

Beautifying line segments

A.1 Choosing which constraints to apply

When beautifying a line segment, we can’t apply more than 2 intersection con-
straints, as the line segment does not have more degrees of freedom. Therefore
in cases where more than 2 intersection constraints are detected, we must choose
only 2.

We use a simple heuristic based on the intuition that users would not draw a
stroke longer than it needs to be, so they wouldn’t encounter constraints near
the extremities of the stroke unless they intended to reach them. We always
choose the 2 constraints that are closest to each of the endpoints of the line
segments.

We use the angular threshold θ (Sec. 3.2.3.1) to determine whether a line seg-
ment is close enough to an orthogonal direction to be constrained to it.
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A.2 Applying constraints

To constrain a line segment to one or two intersection constraints, we simply
update one or both endpoints such that the line segment passes through the
constraint(s).

If the constraint is close enough to one of the endpoints (within a distance 2 ∗ δ,
with δ from Sec. 3.2.3.1), we set the endpoint to be at the intersection constraint
position.

If there are 2 intersection constraints and they are not near the endpoints, we
project both endpoints on the line formed by the intersection constraints. This
yields the beautified line segment.

If there is 1 intersection constraint that is not near one of the endpoints, we
translate the line segment so that it passes through the constraint.



Appendix B

Surface patches update
mechanism

In this Appendix we provide a high-level explanation of the patch update mech-
anism we use to automatically delete and create patches, on stroke creation or
deletion.

Each stroke creation or deletion automatically triggers the necessary local cycle
searches and patch deletion. To achieve this, we need to know which changes
are susceptible to form a cycle, or break an existing one.

During the graph update following a user action (addition/deletion of stroke),
we store in a cache:

• Segments: the segments on which a new cycle may be formed.

• Cycles: the cycles that may be broken due to a segment crossing them
(see Fig. B.1a).

Adding a stroke to the sketch will trigger:

• Adding all the new segments from the stroke to the segments cache
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Figure B.1: (a) Before adding the stroke. (b) After adding the stroke, the
patch that is crossed by the new stroke is automatically removed
and replaced by two smaller patches on either side of the new
stroke.

• Adding the cycles from the intersected segments to the cycle cache

Stroke deletion triggers:

• Deleting all cycles bound by this stroke

• Adding the neighboring (non-deleted) segments from the stroke to the
segment cache

After the action is done, we look through the caches. We first examine each
cycle, and check whether it is crossed by any new segment, in which case we
delete the cycle, but add one of its segments to the segments cache to trigger
a new search for cycles there. Then we examine each new segment and run a
local cycle search from both of its endpoint nodes (Section 3.3.2).

After a new cycle is found, we check whether there already exists a cycle bound
by the same segments, if it is the case, we do not accept the new cycle, to avoid
duplicates.

This yields a list of new cycles and deleted cycles, which we can use to appro-
priately create or delete surface patches from the Unity scene.



Appendix C

User study video tutorial

Here we provide a link to the video tutorial that we gave to the participants
before the study, to familiarize them with the system.

Please click here to see the video.

https://youtu.be/Z2JEOQJK8cg
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Appendix D

Controller cheatsheets

In this Appendix we provide the controllers mappings for each controller type
supported by SteamVR. We gave these cheatsheets to the participants during
the study, to help them remember the controls. The blue dot stands for the
dominant hand, while the grey dot stands for the non-dominant hand. Each
participant could adjust which hand was their dominant hand in the executable
for the study.

The mappings of actions on the controllers are quite disputable, they were de-
fined in a way that was most practical for quick implementation purposes where
no on-screen UI or buttons were necessary, but they certainly lack usability.
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Figure D.1: HTC Vive controllers

Figure D.2: Oculus Touch controllers

Figure D.3: Valve Index controllers



Appendix E

Project plan

Here we present an outline of the timeline followed during this project. We
followed closely the list of different ideas that we planned for, at the beginning
of the project. At the time, we did not set up a provisional planning with
deadlines for each step, due to the large uncertainty we had on the feasability
of some parts, or on how long each step would take.

In retrospect, not setting up fixed dates to start on some parts such as the
user study impacted on them in a way that could have been avoided, if we had
stuck to a fixed plan. Indeed, we would have needed more time to run the
study completely, as it is difficult to schedule participants remotely and there
are many potential issues with running the study in this way.

January

We started the thesis by a 3-week project course (02507), in order to lay the
technical foundations for the thesis project.

• Implemented a prototype VR sketching application in Unity.
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• Experimented with simple beautification techniques, such as constraining
endpoints of strokes

• Conducted a small user study to pinpoint what difficulties users would
encounter while sketching in VR.

February

• Explored the existing litterature on sketch beautification and depth-inference,
as well as sketching interfaces both in immersive environments and in 2D.

• Precised the scope of the project to focus on the ideas that seemed the most
promising and novel: stroke beautification and later automatic surfacing
of curve networks.

• Continued working on the prototype application and built the basic bricks
of the constraint detection for beautification.

• Realised that enforcing constraints in a local manner without seeking to
preserve input shape was not going to work.

March

• Experimented with, and finally implemented the optimisation approach for
beautification. This was done by using artificial sketch data in a Python
code base (in part due to inaccessibility of VR equipment during lockdown
in France).

April

• Ported the beautification method from Python to the Unity C# scripts,
and adapted it to the existing application.

• Informally validated the performance of the beautification method by do-
ing a serie of sketches.

• Started to think of how to find the intended surface from the strokes, by
reading previous work on the subject.
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May

• Implemented the graph structure and the procedures to update the graph
while the user adds strokes and intersections.

• Implemented the basic cycle detection algorithm, and discovered the main
edge cases.

• Adapted the source code from Zou et al. [58] to our use case, and compiled
it as a native plugin for the runtime Unity application.

June

• Added remeshing and smoothing to the native plugin, to get nicer surfaces.

• Implemented all alternative heuristics to help the cycle detection algorithm
deal with a greater variety of cases.

• Implemented "drawing on surfaces".

• Implemented the user-guided surfacing interaction and logic.

• Implemented drawing volume scaling interaction, and adaptive beautifi-
cation thresholds.

• Defined the protocol for the user study.

• Wrote the Introduction of the thesis, and created a number of explanatory
figures for the Method section.

July

• Implemented all necessary helper features and data logging utilities for
the remote user study.

• Worked on fixing bugs and improving usability.

• Ran a few small pilot studies to spot usability issues.

• Prepared the study material (video tutorial, forms).

• Ran the study remotely with 4 participants.

• Analyzed the results.

• Wrote most of the thesis.
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